The Univeristy of Melbourne The Royal Melbourne Hopspital

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Publication

Non-SARS-CoV-2 respiratory viral detection and whole genome sequencing from COVID-19 rapid antigen test devices: a laboratory evaluation study


Authors:

  • Moso, Michael A
  • Taiaroa, George
  • Steinig, Eike
  • Zhanduisenov, Madiyar
  • Butel-Simoes, Grace
  • Savic, Ivana
  • Taouk, Mona L
  • Chea, Socheata
  • Moselen, Jean
  • O’Keefe, Jacinta
  • Prestedge, Jacqueline
  • Pollock, Georgina L
  • Khan, Mohammad
  • Soloczynskyj, Katherine
  • Fernando, Janath
  • Martin, Genevieve E
  • Caly, Leon
  • Barr, Ian G
  • Tran, Thomas
  • Druce, Julian
  • Lim, Chuan K
  • Williamson, Deborah A

Details:

The Lancet Microbe, Volume 5, Issue 4, 2024-04-30

Article Link: Click here

Background There has been high uptake of rapid antigen test device use for point-of-care COVID-19 diagnosis. Individuals who are symptomatic but test negative on COVID-19 rapid antigen test devices might have a different respiratory viral infection. We aimed to detect and sequence non-SARS-CoV-2 respiratory viruses from rapid antigen test devices, which could assist in the characterisation and surveillance of circulating respiratory viruses in the community. Methods We applied archival clinical nose and throat swabs collected between Jan 1, 2015, and Dec 31, 2022, that previously tested positive for a common respiratory virus (adenovirus, influenza, metapneumovirus, parainfluenza, rhinovirus, respiratory syncytial virus [RSV], or seasonal coronavirus; 132 swabs and 140 viral targets) on PCR to two commercially available COVID-19 rapid antigen test devices, the Panbio COVID-19 Ag Rapid Test Device and Roche SARS-CoV-2 Antigen Self-Test. In addition, we collected 31 COVID-19 rapid antigen test devices used to test patients who were symptomatic at The Royal Melbourne Hospital emergency department in Melbourne, Australia. We extracted total nucleic acid from the device paper test strips and assessed viral recovery using multiplex real-time PCR (rtPCR) and capture-based whole genome sequencing. Sequence and genome data were analysed through custom computational pipelines, including subtyping. Findings Of the 140 respiratory viral targets from archival samples, 89 (64%) and 88 (63%) were positive on rtPCR for the relevant taxa following extraction from Panbio or Roche rapid antigen test devices, respectively. Recovery was variable across taxa: we detected influenza A in nine of 18 samples from Panbio and seven of 18 from Roche devices; parainfluenza in 11 of 20 samples from Panbio and 12 of 20 from Roche devices; human metapneumovirus in 11 of 16 from Panbio and 14 of 16 from Roche devices; seasonal coronavirus in eight of 19 from Panbio and two of 19 from Roche devices; rhinovirus in 24 of 28 from Panbio and 27 of 28 from Roche devices; influenza B in four of 15 in both devices; and RSV in 16 of 18 in both devices. Of the 31 COVID-19 devices collected from The Royal Melbourne Hospital emergency department, 11 tested positive for a respiratory virus on rtPCR, including one device positive for influenza A virus, one positive for RSV, four positive for rhinovirus, and five positive for SARS-CoV-2. Sequences of target respiratory viruses from archival samples were detected in 55 (98·2%) of 56 samples from Panbio and 48 (85·7%) of 56 from Roche rapid antigen test devices. 98 (87·5%) of 112 viral genomes were completely assembled from these data, enabling subtyping for RSV and influenza viruses. All 11 samples collected from the emergency department had viral sequences detected, with near-complete genomes assembled for influenza A and RSV. Interpretation Non-SARS-CoV-2 respiratory viruses can be detected and sequenced from COVID-19 rapid antigen devices. Recovery of near full-length viral sequences from these devices provides a valuable opportunity to expand genomic surveillance programmes for public health monitoring of circulating respiratory viruses. Funding Australian Government Medical Research Future Fund and Australian National Health and Medical Research Council.