Mucosal vaccination against SARS-CoV-2 using recombinant influenza viruses delivering self-assembling nanoparticles
Authors:
- Pilapitiya, Devaki
- Lee, Wen Shi
- Vu, Mai N.
- Kelly, Andrew
- Webster, Rosela H.
- Koutsakos, Marios
- Kent, Stephen J.
- Juno, Jennifer A.
- Tan, Hyon-Xhi
- Wheatley, Adam K.
Details:
Vaccine, Volume 46, 2025-02-06
Article Link: Click here
Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms. Following intranasal immunisation, mice developed potent serological anti-RBD responses, with ferritin nanoparticles superseding monomeric or trimeric RBD responses. While parenteral and mucosal immunisation elicited robust anti-RBD IgG in serum, mucosal immunisation seeded respiratory IgA, RBD-specific lung-resident memory and germinal centre (GC) B cells. In animals with prior intramuscular vaccination, intranasal boosting with recombinant influenza vectors augmented mucosal IgG, IgA, GC and memory B cells, and SARS-CoV-2 lung neutralising titres. Recall of RBD-specific memory B cells via antigen re-exposure in the lung increased antibody-secreting cells in the lung-draining lymph nodes, with maintenance of lung GC B cells. Recombinant influenza-based vaccines effectively deliver highly immunogenic self-assembling nanoparticles, generating antibodies and B cells in the respiratory mucosa. This strategy provides a tractable pathway to augment lung-localised responses against recurrent respiratory viral infections.