ADDENDUM TO DOHERTY MODELLING REPORT REVISED 30TH AUGUST 2021

This is a consolidated final version that incorporates previous errata and corrections to data mapping. While some individual data items have changed from previous versions, the conclusions have not changed. Text relating to PHSMs has been amended for precision and clarity.

Table of contents

Executive summary	2
Exploring thresholds for transition to Phase B for a feasible 'transmission reducing' strategy	3
Defining the transmission reducing strategy	3
Timeliness of achieving coverage targets for this scenario	3
Transmission potential (TP) by vaccine coverage for this scenario	4
Impact of public health response and bundled social measures on TP	5
Anticipated requirements for social measures, by coverage scenario	6
Dynamics and consequences following Phase B transition for partial and optimal TTIQ	7
Early epidemic growth trajectories	7
Associated health impacts of transmission, relative to health sector capacity	9
Health impacts by age group and vaccine status	11

TECHNICAL APPENDIX

Vaccine allocation scenario	15
Population mixing assumptions	16
Impact of Public Health and Social Measures on TP	19

Executive summary

- Models of COVID-19 infection and vaccination were used to define a target level of vaccine coverage for transition to Phase B of the National Plan. The model was based on the simplifying assumption of a single national epidemic, with COVID-19 transmission, severity and vaccine effectiveness as for the Delta variant.
- Our report for 30th July 2021 National Cabinet considered hypothetical age-based vaccine allocation scenarios underpinning coverage targets of 50, 60, 70 and 80%, to explore the population level impacts of strategies focused either primarily on direct protection or transmission reduction.
- From the starting point of age-based coverage in Australia as of 12 July 2021, an 'All adults' allocation strategy that achieved high coverage in key transmitting populations (20-39 years) resulted in greatest reductions in harms across all age groups, regardless of vaccination status.
 - This hypothetical scenario was mapped to an *implementable strategy consistent with the national COVID-19 immunisation programme*, under which vaccines would be opened up to 30-39 year olds on 31 August 2021, and 16-29 years olds from 11 October, called 'Transmission reducing';
 - This strategy captured the benefits achieved under the previous preferred strategy, achieving a slightly lower TP by 70% coverage, and equivalence at 80%;
 - Epidemic dynamics assuming baseline restrictions and partial TTIQ were very similar to the 'all adults' strategy;
 - Corresponding clinical outcomes were similar or improved at coverage of 60% or above.
- Our main report highlighted the importance of maintaining optimal TTIQ responses in the context of ongoing public health and social measures (PHSMs) to minimise rapid epidemic growth and escalation of severe disease outcomes, even in a highly immunised population;
 - This report compared epidemic dynamics and clinical outcomes for the 'Transmission reducing' strategy assuming 'baseline PHSM' with either 'partial TTIQ' or 'optimal TTIQ';
 - Infections and corresponding adverse consequences were reduced by several orders of magnitude, assuming baseline measures and sustained highly effective public health response capacity;
 - The ability to deliver this capacity is greatly assisted by the more even distribution of reported cases over the 6 months time window of reporting, given an absence of rapid epidemic escalation.
- As in our previous report, the contingency of these outcomes on population behaviours including vaccine acceptance, co-operation with behavioural restrictions and active engagement and compliance with public health responses is critically important for achieving programmatic outcomes.
- Our models assume a point source outbreak as the key initiating event for transmission. Given the low caseloads achieved under the 'optimal TTIQ' scenario and considered desirable in Phase B, the influence of imported infections on local epidemic dynamics merits further exploration in the next phase of modelling.

Exploring vaccine thresholds for transition to Phase B of the National Plan

Our report for 30th July 2021 National Cabinet considered hypothetical age-based vaccine allocation scenarios underpinning coverage targets of 50, 60, 70 and 80%, to explore the population level impacts of strategies focused either primarily on direct protection or transmission reduction. From the starting point of age-based coverage in Australia as of 12 July 2021, an 'All adults' allocation strategy that achieved high coverage in key transmitting populations (20-39 years) resulted in greatest reductions in harms across all age groups, regardless of vaccination status. This hypothetical scenario was mapped to an *implementable strategy consistent with the national COVID-19 immunisation programme*, under which vaccines would be opened up to 30-39 year olds on 31 August 2021, and 16-29 year olds from 11 October, called 'Transmission reducing'.

Defining the transmission reducing strategy

The 'transmission reducing' strategy is defined in relation to previously modelled vaccination allocation scenarios in Table 1.1.

Strategy	Allocation sequence
Oldest first	Vaccinations are prioritised from oldest to youngest. Specifically, prioritization occurs in the following order: 80+, 70-79, 60-69, 50-59, 40-49, 30-39, 20-29, 16-19
40+ years first	Vaccinations are prioritised from 40+ upwards, then 16+. Specifically, prioritization occurs in the following order: 40-49, 50-59, 60-69, 70-79, 80+, 16-19, 20-29, 30-39
All adults	Vaccinations are not prioritised in any particular order by age
Transmission reducing	As for national program, under which all individuals 40+ are currently eligible. Within the simulation timeframe, the 30-39 years cohort becomes eligible from 30 August, and 16-29 year olds on 11 October.

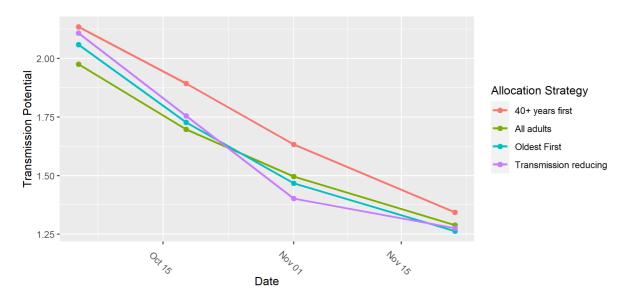
Table 1.1: Vaccine allocation strategies by age, assuming current recommendations for AstraZeneca vaccine age eligibility (60+ years) and dosing interval (12 weeks)

Timeliness of achieving coverage targets by vaccine allocation scenario

The indicative dates of achieving differing coverage thresholds for the 'transmission reducing' strategy are shown relative to the previously explored scenarios in Table 1.2. Under the revised scenario, there is an anticipated one-week delay to achieving the 70% coverage threshold, but all other target dates are unchanged. Not that achievement of any of these thresholds by the given date is contingent on population acceptance.

Table 1.2: Date of achieving a given vaccine coverage threshold by allocation strategy, assuming a start date and population completed doses (AIR) as of 12th July 2021, assuming Astra Zeneca is recommended only for 60+ years and delivered at a 12 week interval

	Coverage threshold			
Strategy	50%	60%	70%	80%
Oldest/40+ first and All ages	4 October	18 October	1 November	22 November
Transmission reducing	4 October	18 October	8 November	22 November

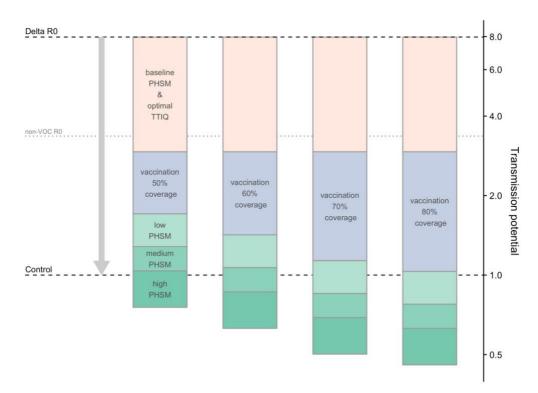

Transmission potential (TP) by vaccine coverage and allocation strategy

The reduction in TP achieved for each strategy by the coverage threshold is shown in Table 2.1 and Figure 1. As shown in the static table, the greatest gains of the transmission reducing strategy relative to others is demonstrable at the 70% coverage threshold, by which point it outperforms the 'all adults' strategy.

Table 2.1: Scaled values of Delta variant transmission potential (TP) for 50%, 60%, 70% and 80% population coverage for each allocation strategy, assuming AZ is delivered to individuals aged 60+ years, with a 12-week dosing interval. We use a starting TP of 3.6.

	Eligible population coverage (16+)			
Allocation Strategy	50%	60%	70%	80%
Oldest first	2.1	1.7	1.5	1.3
40+ years first	2.1	1.9	1.6	1.3
All adults	2	1.7	1.5	1.3
Transmission reducing	2.1	1.8	1.4	1.3

Figure 1: Rate of change in TP over time, by vaccine allocation strategy



Impact of public health response and bundled social measures on TP

Figure 2.1: Combined effects of vaccination and PHSM scenarios on COVID-19 transmission potential under the 'Transmission reducing' vaccination scenario assuming only *partial TTIQ effectiveness*, due to high caseloads. Standard age (60+) and dosing interval (12 weeks) recommendations are assumed for the AZ vaccine.

Figure 2.2: As for Figure 2.1 but assuming optimal TTIQ effectiveness

Anticipated requirements for social measures, by coverage scenario

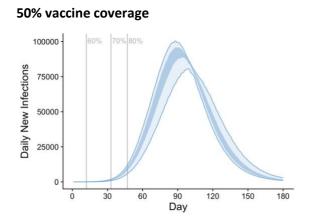
Table 3.1: Percentage of time high PHSM would need to be in place for long-term control, with reversion to low PHSM at other times, for 50%, 60%, 70% and 80% population coverage achieved under the three age-based allocation strategies. These scenarios assume *partial* TTIQ effectiveness, under high caseloads. Standard age (60+) and dosing interval (12 weeks) recommendations are assumed for AZ vaccine.

Strategy	Eligible population coverage (16+)			
	50%	60%	70%	80%
Oldest first				
	82%	49%	18%	0%
Middle years first				
	89%	67%	39%	2%
All adults				
	75%	46%	22%	0%
Transmission				
reducing	87%	52%	10%	0%

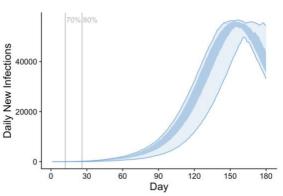
Strategy	Eligible population coverage (16+)			
	50%	60%	70%	80%
Oldest first				
	42%	9%	0%	0%
Middle years first				
	49%	27%	0%	0%
All adults				
	35%	6%	0%	0%
Transmission				
reducing	47%	12%	0%	0%

More detailed breakdowns of the level of time likely required under differing degrees of social restrictions for the various coverage thresholds and allocation strategies are shown in Tables S2.2 and 2.3 (assuming partial/optimal TTIQ), and S2.4 and 2.5 (for both levels of TTIQ in the context of low PHSM).

Dynamics and consequences given timing of transition to Phase B


Epidemic simulations assume a population size of 24 million. Infection outputs reflect the range of results observed across 20 separate model runs for each scenario. We assume that a single outbreak involving 30 individuals initiates community transmission at the time of transition to Phase B once target vaccine coverage is achieved. Each simulation is run for 180 days after this initiating date. As immunisation rollout is ongoing, achievement of future vaccine targets is indicated as relevant, in relation to evolving epidemics. Outputs assume baseline PHSM and are compared for partial and optimal TTIQ.

In all figures, dark banding represents the central 50% credible interval (i.e., from the 25th to 75th centile) for simulations. The light banding represents the central 90% credible interval (i.e., from the 5th to 95th centile) for simulations.


Early epidemic growth given established transmission, for Transmission reducing strategy

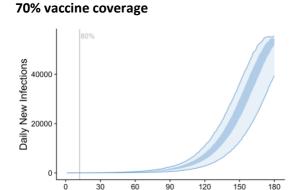

Figures 3.1-3.2 demonstrate the rate of increase in all infections over time, including those which are asymptomatic and regardless of subsequent clinical severity for the symptomatic proportion.

Figure 3.1: Epidemic growth to 180 days given transition to Phase B leading to established community transmission for the threshold coverage targets of 50, 60, 70 and 80%, assuming baseline PHSM and partial TTIQ (*note different y axes)

90

Day

ò

80% vaccine coverage

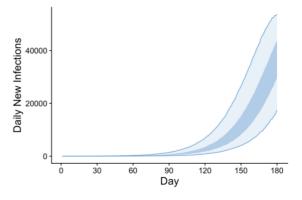
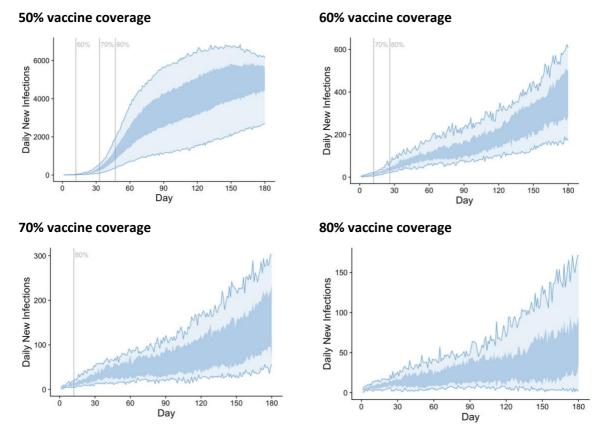
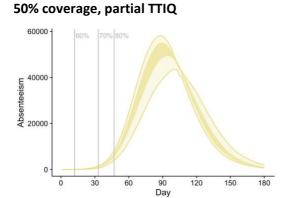
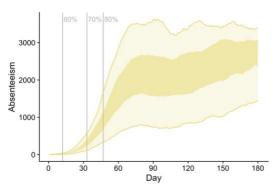
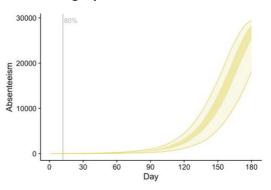
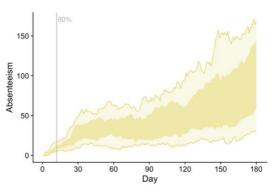


Figure 3.2: As for Figure 3.1, but for optimal TTIQ

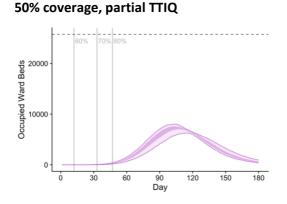




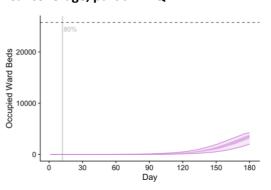

Figure 3.3: Prevalence of individuals absent from the workforce due to symptomatic infection and mandatory isolation (10 days) for the 50 and 70% coverage scenarios (*note y axes differ)

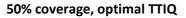


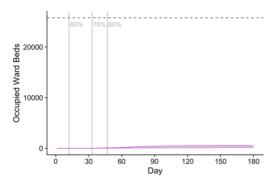

50% coverage, optimal TTIQ

70% coverage, partial TTIQ






Associated health impacts of transmission, relative to health sector capacity


Figure 4.1: Occupied hospital ward beds over the course of the epidemic, in relation to stated national capacity, which represents 50% of the total. Scenarios shown are for 50% achieved coverage at epidemic onset. All scenarios assume baseline PHSM.

70% coverage, partial TTIQ

70% coverage, optimal TTIQ

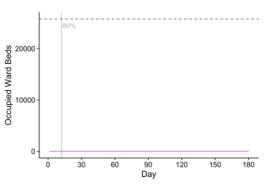
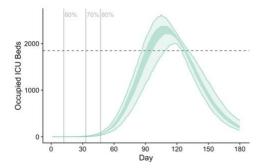
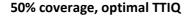
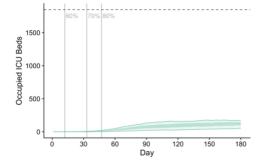
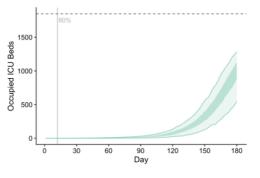
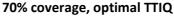
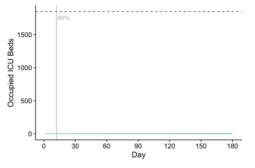
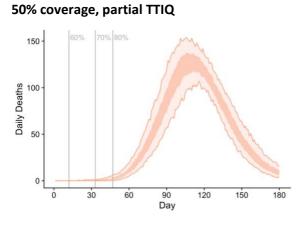





Figure 4.2: As for Figure 3.1 but for occupied ICU beds in relation to national capacity

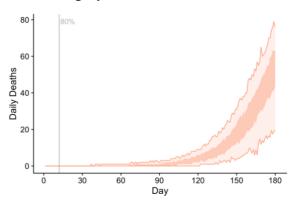

50% coverage, partial TTIQ

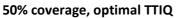






70% coverage, partial TTIQ





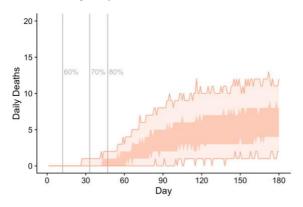
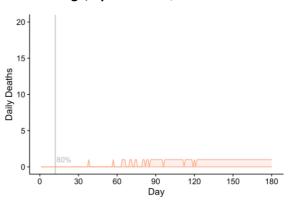


Figure 4.3: As for Figure 3.1 but reporting daily deaths (*note y axes differ)


70% coverage, partial TTIQ

70% coverage, optimal TTIQ

Health impacts by age group and vaccine status

Central estimates of these health impacts over the first 180 days following established community transmission are provided in the tables below, for ease of comparison across coverage thresholds, vaccination status and age group. Note that given epidemic stochasticity and uncertainty, these estimates are drawn from a broader range of possible values as demonstrated by the Figures above. All scenarios assume baseline PHSM and are compared for 'partial' and 'optimal' TTIQ effectiveness.

Table 4.1 Cumulative outcomes of interest over the first 180 days by achieved coverage thresholdprior to transmission, for the 'Transmission reducing vaccine allocation strategy with baselinePHSM and partial TTIQ

		Vaccine Coverage			
	50%	60%	70%	80%	
Symptomatic infections	1,109,597	695,075	385,983	227,702	
Ward admissions	44,250	24,719	12,337	6,951	
ICU admissions*	10,903	5,785	2,733	1,505	
Deaths	8,032	3,591	1,457	761	

*ICU admissions are reported here and below assuming unconstrained capacity, even when national thresholds are anticipated to be reached or exceeded, so reflect 'true' requirements

Table 4.2 As for Table 4.1 but for optimal TTIQ

		Vaccine Coverage			
	50%	60%	70%	80%	
Symptomatic infections	112,430	6,489	2,737	1,149	
Ward admissions	3,760	207	88	37	
ICU admissions*	885	48	21	8	
Deaths	567	30	13	6	

Table 4.3: Cumulative symptomatic infections, ward admissions, ICU admissions and deaths over the first 180 days for coverage thresholds of 50%, 60%, 70% and 80% achieved assuming baseline PHSM and either partial or optimal TTIQ, broken down by vaccination status[#]

	Partia	ΙΤΤΙΟ	Optimal	TTIQ*
Achieved eligible population coverage	Vaccinated	Unvaccinated	Vaccinated	Unvaccinated
50%				
Symptomatic infections	204,523	905,074	16,259	96,170
Ward admissions	12,686	31,564	966	2,794
ICU admissions	3,529	7,374	259	626
Deaths	2,615	5,417	174	393
60%				
Symptomatic infections	105,943	589,132	867	5,622
Ward admissions	6,874	17,845	51	155
ICU admissions	1,828	3,956	14	34
Deaths	1,153	2,438	9	21
70%				
Symptomatic infections	53,982	332,001	361	2,376
Ward admissions	3,320	9,017	22	66
ICU admissions	838	1,895	6	15
Deaths	465	992	4	9
80%				
Symptomatic infections	30,528	197,174	144	1,005
Ward admissions	1,837	5,114	9	28
ICU admissions	453	1,052	2	6
Deaths	240	521	1	4

*At high caseloads as anticipated in the 50% scenario, consistent maintenance of 'optimal TTIQ' is deemed highly unlikely

Note that in the case of emergence of a 'vaccine escape' variant, both the total number of infections and the proportion of severe cases occurring in fully immunised individuals would increase dramatically.

As can be seen from Tables 4.4 and 4.5 (and the corresponding pair 4.6 and 4.7), the transmission reducing strategy's effectiveness at reducing symptomatic infections and severe outcomes across all age groups is markedly enhanced by maintenance of optimal TTIQ in the presence of baseline restrictions.

Table 4.4: Cumulative symptomatic infections, ward admissions, ICU admissions and deaths over
the first 180 days for the <u>coverage threshold of 70% assuming baseline PHSM and partial TTIQ</u> ,
broken down by vaccination status and age

	<16 yrs		16-3	9 yrs	40-59 yrs		60+ yrs		70+ yrs	
	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac
Denominator population*	0	5,075, 816	4,599, 519	3,930, 112	5,505, 295	917, 528	5,161, 851	506 <i>,</i> 030	2,736, 171	224, 478
Symptomatic infections	0	226,084	21,032	64,770	20,775	35,837	12,175	5,309	3,337	1,043
Ward admissions	0	1,983	478	2,125	1,151	3,108	1,691	1,801	743	618
ICU admissions	0	164	85	369	333	896	420	465	131	103
Deaths	0	46	13	84	86	338	365	524	207	245

*Note that 'denominator population' refers to numbers of persons at the time when 70% threshold coverage is achieved – vaccination continues during the simulations to 80% threshold values

	<10	6 yrs	16-3	9 yrs	40-5	9 yrs	60+	yrs	70+	yrs
	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac
Denominator population*	0	5,075, 816	4,599, 519	3,930, 112	5,505, 295	917, 528	5,161, 851	506, 030	2,736, 171	224, 478
Symptomatic infections	0	1,606	149	487	137	250	75	33	19	6
Ward admissions	0	14	3	17	8	23	11	12	4	4
ICU admissions	0	1	1	3	3	7	3	3	1	1
Deaths	0	0	0	1	1	3	3	4	2	2

Table 4.5: As for table 4.4, assuming optimal TTIQ

*Note that 'denominator population' refers to numbers of persons at the time when 70% threshold coverage is achieved – vaccination continues during the simulations to 80% threshold values

Table 4.6 Cumulative symptomatic infections, ward admissions, ICU admissions and deaths over the first 180 days for the <u>coverage threshold of 80% assuming baseline PHSM and partial TTIQ</u>, broken down by vaccination status and age

	<1	6 yrs	16-3	9 yrs	40-5	9 yrs	60+	yrs	70+	yrs
	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac
Denominator population	0	5,075, 816	5,847, 392	2,682, 239	5,656, 653	766, 170	5,269, 008	398, 730	2,783, 769	176, 800
Symptomatic infections	0	135,408	11,943	37,803	11,724	20,931	6,861	3,031	1,875	587
Ward admissions	0	1,128	265	1,218	634	1,762	937	1,006	408	340
ICU admissions	0	93	46	208	180	496	228	255	70	54
Deaths	0	25	6	45	44	176	190	276	107	128

Table 4.7: As for table 4.6, assuming optimal TTIQ

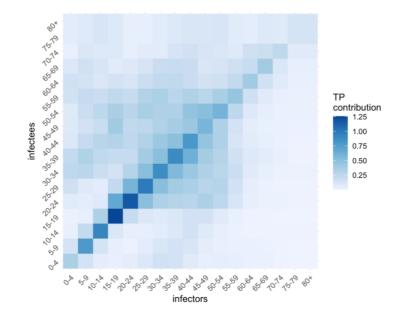
	<10	6 yrs	16-3	9 yrs	40-5	9 yrs	60+	yrs	70+	yrs
	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac	Vacc'd	Unvac
Denominator population	0	5,075, 816	5,847, 392	2,682, 239	5,656, 653	766, 170	5,269, 008	398, 730	2,783, 769	176, 800
Symptomatic infections	0	687	57	199	56	105	31	14	8	3
Ward admissions	0	6	1	7	3	10	4	5	2	2
ICU admissions	0	1	0	1	1	3	1	1	0	0
Deaths	0	0	0	0	0	1	1	2	1	1

TECHNICAL APPENDIX

Vaccine allocation scenario

Table S1.1: Distribution of vaccination coverage by age band by achievement of the 70% vaccination coverage threshold (1st November) for standard AZ dosing indications (60+, 12 week interval between doses) and the three age-based allocation strategies.

Age band	Eligible population	Oldest first	40+ years first	All adults	Transmission reducing
16-19	1190616	4.2%	86.1%	57.1%	34.3%
20-29	3577491	18.9%	52.6%	58.8%	38.4%
30-39	3761524	74.8%	16.6%	60.6%	74.9%
40-49	3295699	90.4%	90.6%	69.0%	84.4%
50-59	3127124	92.1%	92.0%	74.6%	87.1%
60-69	2707232	87.3%	93.8%	84.0%	89.6%
70-79	1897838	96.1%	93.3%	89.4%	93.1%
80+	1062811	95.2%	83.0%	86.3%	91.2%


*Note that for the first three allocation scenarios, the date on which 70% coverage is achieved in the simulation is 1st November, compared with the 'transmission reducing' strategy for which that date is 8th November

Age band	Eligible population	Oldest first	40+ years first	All adults	Transmission reducing
16-19	1190616	8.6%	86.9%	73.5%	57.1%
20-29	3577491	64.1%	87.1%	74.6%	59.7%
30-39	3761524	88.1%	41.4%	75.6%	80.6%
40-49	3295699	90.5%	90.6%	80.8%	87.0%
50-59	3127124	92.1%	92.0%	84.2%	89.2%
60-69	2707232	91.7%	94.2%	90.0%	91.8%
70-79	1897838	96.2%	95.9%	93.4%	94.6%
80+	1062811	95.2%	89.2%	91.4%	93.0%

*This coverage threshold is achieved by 22 November across all allocation strategies

Population mixing assumptions

Population mixing within and between age groups is configured based on widely accepted social contact matrices published by Prem et al (PLoS Computational Biology 2017)(Figure S2.1). It has been expanded to include an 80+ age class (assumed to have the same mixing rates as 75-79 years). Age-specific susceptibility and transmissibility estimates from Davies et al. (Nature Medicine 2020) are used and transmission rates have been calibrated to our baseline population-wide TP (here denoted R) of 3.6. Of note, the greatest mixing intensities are anticipated between individuals aged from 15-24 years, remaining high through adults of working age. While intense school-based mixing is anticipated between children aged 5-14, the transmission matrix accounts for the relatively low observed infectiousness of this age group, associated with a high proportion of asymptomatic infections.

The key message of Figure S2.1 is that in the absence of vaccination, individuals of different ages do not contribute equally to the spread of infection in the population.

The impact of vaccination on overall transmission will therefore be substantially influenced by the rate of vaccine uptake achieved **within distinct population age cohorts.** Table S3.2 shows the range of values for achieved coverage by age group underpinning 80% 'age eligible coverage' for our three hypothetical vaccine allocation strategies.

Figures S1.2-S1.5 provide a visual demonstration of the reduction in transmission achieved for each age band depending on the rollout scenario. Light grey bars show the contribution of each age group to transmission potential given different numbers of contacts and age differences in both susceptibility and infectiousness, in the absence of vaccination. Dark grey bars show the contribution of each age group to transmission potential for that vaccine allocation strategy and coverage. The 'all ages' strategy consistently produces the greatest proportional reductions in infectiousness across peak transmitting age groups.

Figure S1.2: Impact of the four different allocation strategies on TP by age category, resulting in the overall TP achieved by 50% age eligible population coverage

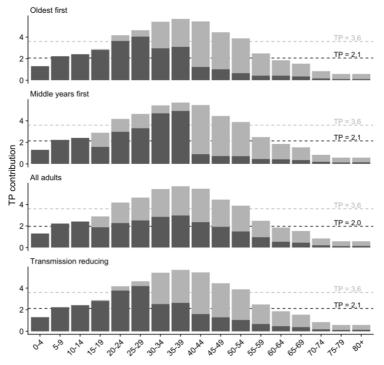
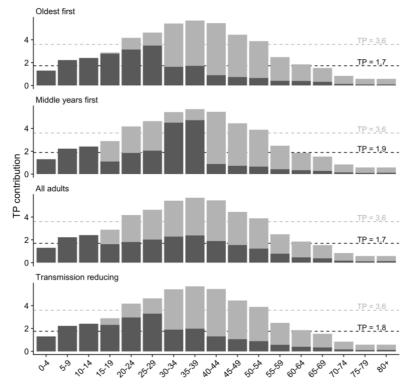



Figure S1.3: As for Figure S1.2, but for 60% age eligible population coverage

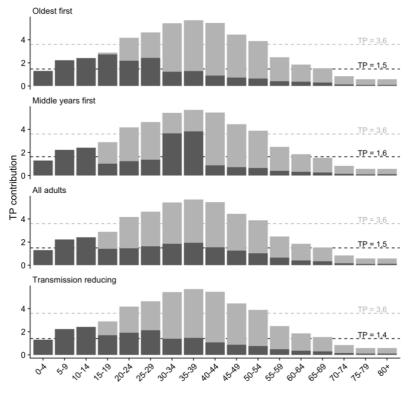
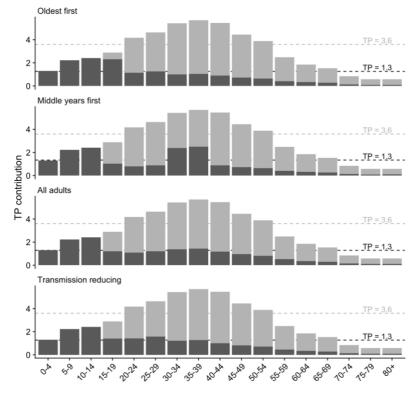



Figure S1.4: As for Figure S1.2, but for 70% age eligible population coverage

Figure S1.5: As for Figure S1.2, but for 80% age eligible population coverage

Impact of public health response and bundled social measures on TP

Table S2.2: Proportion of time lockdowns are needed to constrain transmission when the TTIQ
public health response is only partially effective, due to high caseloads

Vaccine				
coverage	Allocation scenario	Low PHSMs	Medium PHSMs	High PHSMs
			Not possible to	
		Not possible to	constrain outbreak	
		constrain outbreak	with moderate	
50%	Oldest first	with light restrictions	lockdown	89%
			Not possible to	
		Not possible to	constrain outbreak	
		constrain outbreak	with moderate	
	40+ years first	with light restrictions	lockdown	93%
			Not possible to	
		Not possible to	constrain outbreak	
		constrain outbreak	with moderate	
	All adults	with light restrictions	lockdown	84%
			Not possible to	
		Not possible to	constrain outbreak	
	Transmission	constrain outbreak	with moderate	
	reducing	with light restrictions	lockdown	92%
			Not possible to	
		Not possible to	constrain outbreak	
		constrain outbreak	with moderate	
60%	Oldest first	with light restrictions	lockdown	67%
			Not possible to	
		Not possible to	constrain outbreak	
		constrain outbreak	with moderate	
	40+ years first	with light restrictions	lockdown	78%
			Not possible to	
		Not possible to	constrain outbreak	
		constrain outbreak	with moderate	
	All adults	with light restrictions	lockdown	65%
			Not possible to	
		Not possible to	constrain outbreak	
	Transmission	constrain outbreak	with moderate	
	reducing	with light restrictions	lockdown	69%
		Not possible to		
		constrain outbreak		
70%	Oldest first	with light restrictions	77%	47%
		Not possible to		
		constrain outbreak		
	40+ years first	with light restrictions	99%	60%
		Not possible to		
		constrain outbreak		
	All adults	with light restrictions	81%	49%
	_	Not possible to		
	Transmission	constrain outbreak	222	
	reducing	with light restrictions	68%	41%

80%	Oldest first	82%	47%	29%
		Not possible to		
		constrain outbreak		
	40+ years first	with light restrictions	59%	36%
	All adults	89%	51%	31%
	Transmission			
	reducing	85%	49%	30%

Vaccine				
coverage	Allocation scenario	Low PHSMs	Medium PHSMs	High PHSMs
		Not possible to	Not possible to	
		constrain outbreak	constrain outbreak	
		with light	with moderate	
50%	Oldest first	restrictions	lockdown	63%
		Not possible to	Not possible to	
		constrain outbreak	constrain outbreak	
		with light	with moderate	
	40+ years first	restrictions	lockdown	67%
		Not possible to		
		constrain outbreak		
		with light		
	All adults	restrictions	94%	58%
		Not possible to	Not possible to	
		constrain outbreak	constrain outbreak	
	Transmission	with light	with moderate	
	reducing	restrictions	lockdown	66%
		Not possible to		
		constrain outbreak		
		with light		
60%	Oldest first	restrictions	67%	41%
		Not possible to		
		constrain outbreak		
		with light		
	40+ years first	restrictions	86%	52%
		Not possible to		
		constrain outbreak		
		with light		
	All adults	restrictions	64%	39%
		Not possible to		
		constrain outbreak		
	Transmission	with light		
	reducing	restrictions	71%	43%
70%	Oldest first	60%	34%	21%
	10	070/	F C A /	2 404
	40+ years first	97%	56%	34%
	All adults	67%	38%	23%
	Transmission			
	reducing	44%	25%	15%
	reducing	++/0	23/0	1 .]/0

Table S2.3: As for Table S2.2, but for an *optimally effective* TTIQ response

80%	Oldest first	7%	4%	3%
	40+ years first	29%	17%	10%
	All adults Transmission reducing	15% 11%	8% 6%	5%

Table S2.4: Proportion of time lockdowns are needed to constrain transmission when the TTIQ public health response is only *partially effective*, due to high caseloads, and where low PHSMs are always in place.

Vaccine				
coverage	Allocation scenario	Medium PHSMs	High PHSMs	
		Not possible to		
		constrain outbreak with	2 24/	
50%	Oldest first	moderate lockdown	82%	
		Not possible to		
	10	constrain outbreak with	000/	
	40+ years first	moderate lockdown	89%	
		Not possible to constrain outbreak with		
	All adults	moderate lockdown		
	All duults	Not possible to	75%	
		constrain outbreak with		
	Transmission reducing	moderate lockdown	87%	
		Not possible to	0770	
		constrain outbreak with		
60%	Oldest first	moderate lockdown	49%	
0070	oldest hist	Not possible to	4370	
		constrain outbreak with		
	40+ years first	moderate lockdown	67%	
		Not possible to	•••••	
		constrain outbreak with		
	All adults	moderate lockdown	46%	
		Not possible to		
		constrain outbreak with		
	Transmission reducing	moderate lockdown	52%	
70%	Oldest first	46%	18%	
			1070	
		070/	2004	
	40+ years first	97%	39%	
	All adults	55%	22%	
	Transmission reducing	25%	10%	
80%	Oldest first	0%	0%	
0078		070	070	
		•••	201	
	40+ years first	4%	2%	
		00/	00/	
	All adults	0%	0%	
	Transmission reducing	0%	0%	
	Transmission reducing	070	070	

Vaccine			
coverage	Allocation scenario	Medium PHSMs	High PHSMs
		Not possible to	
		constrain outbreak with	
50%	Oldest first	moderate lockdown	42%
		Not possible to	
		constrain outbreak with	
	40+ years first	moderate lockdown	49%
	All adults	87%	35%
		Not possible to	
		constrain outbreak with	
	Transmission reducing	moderate lockdown	47%
60%	Oldest first	23%	9%
	40+ years first	40+ years first 66%	
	All adults	15%	6%
	Transmission reducing	31%	12%
70%	Oldest first	0%	0%
7070	Oldest hist	070	070
	10 Lucence first	00/	00/
	40+ years first	0%	0%
	All adults	0%	0%
	_	221	00/
	Transmission reducing	0%	0%
80%	Oldest first	0%	0%
	40+ years first	0%	0%
	All adults	0%	0%
	Transmission reducing	0%	0%

Table S2.5: As for Table S2.4, but for an *optimally effective* TTIQ response

	High PHSM	Medium PHSM	Low PHSM	Baseline PHSM
Reference period	VIC 23 August 2020	NSW 1 July 2021	NSW 23 August 2020	NSW March 2021
Stay at home orders	 Stay-at-home except essential purposes 	 Stay-at-home except for work, study and essential purposes 	 No stay-at- home orders 	 No stay-at- home orders
Density restrictions	• 4 sqm rule	• 2 sqm rule	• 2 sqm rule	• 2 sqm rule
Retail trade	 Non-essential retailers and venues closed to public. Take away and home delivery only. 	 Increased retail activity, subject to density restrictions Seated dining for small groups at cafes/restaurants 	 Social distancing rules apply Larger groups allowed 	 Social distancing rules apply
Work	 Only workplaces categorised as permitted work allowed to operate on-site and subject to restrictions 	 Work from home if possible, capacity limits and restrictions on office space apply 	 Return to work, but social distancing and capacity restrictions on office space apply 	• 1.5 sqm rule
Schools and childcare	 Closed – remote learning only 	 Closed or graduated return 	• Open	• Open
Capacity restrictions	 No gatherings - Non-essential venues etc closed. 	 Indoor venues closed. Capacity limits restricted to small groups outdoors 	 Recreational activities allowed and venues open but social distancing and capacity limits apply 	 Large sporting venues to operate at 70 per cent capacity
Travel restrictions	 Essential movements only within 5 or 10 km radius No intra- or inter-state travel 	 Non-essential travel limited – no intra or inter- state travel 	 No travel restrictions Interstate travel allowed 	 No travel restrictions Interstate travel allowed
Other	 Curfew No household visitors and 2- person limit on exercise 	 5 visitors to household and limited outdoor gatherings e.g., 10 people 	 Requirements for record keeping, COVID- safe plans etc 	•