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Work package 2.3: Schools 
 

Executive summary 

Returning students to in-person learning and keeping schools open has been identified as a national 
priority. This work assesses the effectiveness of a variety of school-based surveillance, contact tracing 
and quarantine strategies to prevent outbreaks, reduce transmission in schools, and maximize face-
to-face teaching.  

Key findings 

1. Early infection detection and high vaccine coverage markedly reduce outbreak risk. 
2. Allowing ongoing school attendance for class contacts of a case through a ‘test to stay’ strategy 

achieves equivalent outbreak containment to home quarantine and enables face to face 
learning. 
• This was true for primary and secondary schools. 
• The effectiveness of test-to-stay requires at least partial compliance with testing.  
• The high frequency of testing compensates for the reduced sensitivity of rapid antigen tests. 

3. Regular screening of students in areas at risk of outbreaks can result in even fewer infections 
and in-person teaching days lost. 
• By detecting cases faster, there are fewer infections present when the first diagnosis is made 

and a lower risk of larger outbreaks occurring.  
• Identifying and isolating cases earlier leads to fewer downstream cases requiring isolation. 
• This was true for primary and secondary schools. 

4. School based surveillance testing will have maximum utility in areas with higher-than-average 
transmission. 
• The benefits of student surveillance testing for reducing infections and days of face-to-face 

teaching lost increase as incursion rates increase. 
• More frequent screening provides greater benefits. 

5. Surveillance of teachers had minimal benefit for reducing outbreaks in schools. 
• Teachers only comprise a small proportion of the school community.  
• However, this analysis only considered outcomes following an incursion in a school, and does 

not capture potential benefits that screening teachers may have on preventing of incursions. 
6. Findings are sensitive to assumptions for the number of non-classroom contacts students have. 

• Quarantine or test-to-stay strategies focus on classroom contacts rather than close contacts 
as they are more practical to identify. 

• Strategies are less effective if a greater proportion of risk comes from non-class contacts. 

This analysis focuses on transmissions taking place within schools, and does not consider the benefits 
of community public health responses on reducing incursions into schools, nor the benefits of school 
closure on reducing overall community transmission.   
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Background and aims 

Background 

Returning students to in-person learning and keeping schools open has been identified as a national 
priority.  

The current public health response to COVID-19 cases in schools involves school closure following a 
positive case for cleaning (often three days), as well as 7 or 14-day quarantine for all close contacts 
and their households. If schools reopen with high levels of COVID-19 transmission in the community, 
rates of incursions into schools will also be higher, and the current approach to managing cases in 
schools may be unsustainable and inconsistent with the national priority of maximizing face-to-face 
teaching. Equally, allowing infections to spread within schools and the school community can lead to 
adverse health outcomes for students, their households and family members (e.g., parents and 
grandparents). Hence, different approaches to managing cases in schools and keeping schools open 
may be required. 

 

Aim and scope of work 

This work assesses the effectiveness of a variety of school-based surveillance, quarantine and testing 
strategies to determine which are likely to be the most appropriate for preventing outbreaks, reducing 
transmission in schools, and maximizing in-person learning. Due to the different epidemic situations 
across the country, the analysis is conducted for differing levels of community transmission and school 
incursion rates. 

The analysis does not consider the benefits of community public health responses on reducing 
incursions into schools, nor the benefits of school closure on reducing overall community 
transmission. Reduced community transmission would lead to reduced school incursions, and the 
impact of higher or lower incursion rates are tested in sensitivity analyses.  

The modelling considers primary and secondary schools and does not consider early learning or 
specialized settings (e.g., specialist schools and boarding schools). 

 

Methods 

Model overview 

We used an established agent-based microsimulation model, Covasim [1], developed by the Institute 
for Disease Modelling (USA) and previously adapted by the Burnet Institute to model epidemics in 
Australia [2-5]. The model is open-source and available online [6]. Additional model details are 
provided in the appendix.  

For this analysis, primary and secondary schools are modelled to have different social and mixing 
networks within and so are reported on separately.   
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Primary schools 

Primary schools are modelled as a collection of classrooms, aggregated into schools. Each student is 
assigned to a classroom with others of the same age, and each classroom has an assigned teacher 
(Figure 1). Primary school mixing includes student-student contacts within classrooms, student-
student contacts between students in different classrooms, teacher-teacher contacts and teacher-
student contacts within the classrooms that they are assigned to. 

 

 

Figure 1: Contact networks within primary schools in the model. Primary schools are modelled as a collection 
of classrooms, where students of the same age are assigned a teacher. Primary schools include student-student 
classroom contacts, student-student non-classroom contacts, teacher-teacher contacts and teacher-student 
contacts.  

 

Secondary schools 

Secondary schools are modelled with a lower emphasis on assigned classrooms reflecting attendance 
at classes for multiple core and elective subjects. Hence secondary school students have a greater 
number of classroom contacts than primary school students. Secondary schools in the model include 
student-student classroom contacts, student-student non-classroom contacts, teacher-teacher 
contacts and teacher-student contacts (Figure 2). 
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Figure 2: Contact networks within secondary schools in the model. Secondary school mixing includes student-
student classroom contacts, student-student non-classroom contacts, student-teacher contacts, and teacher-
teacher contacts. Secondary school students have more contacts than primary school students because they 
attend multiple classes. 

 
Transmission in schools 

Transmission is modelled to occur when a susceptible individual is in contact with an infectious 
individual through one of their contact networks. The overall transmission probability per contact per 
day has been calibrated based on the delta variant epidemic wave in Melbourne over the July-
September 2021 period [5]. For individual contacts this transmission risk is further weighted according 
to the setting of the contact (e.g., classroom, home), the time-varying viral load of the person infected, 
whether or not they have symptoms (based on an age-specific probability of being symptomatic), and 
an age-specific disease susceptibility (Table 1).  

 

Symptomatic testing probability (COVID-19 cases) 

All people with severe disease are assumed to be tested. For people with mild symptoms, the model 
includes a per-day probability of seeking a test, which is necessary for the first case to be diagnosed 
when surveillance is not in place (noting that the first case to be detected may be a household member 
of a student at the school, which would trigger contact tracing for the student). Symptomatic testing 
assumes that people who have mild symptoms and are not identified through contact tracing or 
exposure site notification will seek testing during their symptomatic period with a per-day testing 
probability of 11% (varied in a sensitivity analysis).  
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The rest of the community 

The non-school community is included in the model, to capture dynamics such as infected students 
transmitting to household members. This is relevant because adult household members who become 
infected may be more likely to seek symptomatic testing leading to detection of the outbreak, or 
siblings who become infected at home can reintroduce the infection to the school (noting that the 
model replicates the age and household structure of Australia). For all simulations, we assume that 
symptomatic testing and contact tracing in the general community continues, but that no public health 
restrictions are in place or introduced outside of schools.  

 

School surveillance strategies 

School surveillance strategies considered were no surveillance, twice weekly teacher screening with 
rapid antigen tests (RAT), and twice weekly student screening with RAT. These scenarios were 
considered with and without contact tracing in place. 

 
Contact tracing and quarantine strategies in schools 

In all scenarios, students or teachers diagnosed with COVID-19 were assumed to be removed from 
the school and required to isolate until no longer infectious.  

Contact tracing scenarios were based around classroom contacts, as opposed to close contacts, as 
classroom contacts were deemed more practical to identify and apply policies to. Options 
considered were no contact tracing; 7-day quarantine of classroom contacts with/without daily RAT; 
daily RAT of classroom contacts who remain at school (“test-to-stay”); entire school test-to-stay with 
daily RAT after initial case detection.  The inclusion of a 7-day quarantine with RAT was to create a 
fairer comparison to test-to-stay by allowing equivalent likelihood of case ascertainment. 

 
Model simulations and outcomes 

The model was initialized with a single infection allocated randomly within a school. The model was 
run for 45 days, recording the number of cumulative infections in students or teachers attending the 
school. Infections were used as the primary outcome measure as opposed to diagnoses to avoid 
biasing strategies with lower testing rates. 

For each scenario, the simulation was repeated 1000 times and reported outcomes are based on the 
distributions of (1) secondary infections occurring in the same school; and (2) days of face-to-face 
teaching lost. Days of face-to-face teaching lost are calculated for the school as the total student-days 
spent in isolation or quarantine as a result of a school quarantine policy over the 45 day period. 

 

Sensitivity analyses 
Sensitivity analyses were conducted to consider how outcomes varied with different assumptions or 
inputs for: 
• School incursion rates: model initialization with 1, 2 or 3 simultaneous incursions 
• Vaccination coverage:  

o 0%, 60%, 80% coverage among students 12+ years 
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o 0%, 60%, 80% coverage among students 5-11 years 
o 60%, 80%, 100% coverage among teachers 

• Non-pharmaceutical interventions (e.g. ventilation, physical distancing): efficacy at reducing 
transmission probability per contact of 0%, 25% or 50% 

• Surveillance testing frequency (weekly or daily compared with twice weekly) 
• Compliance with test-to-stay (also an equivalent sensitivity analysis for lower test sensitivity): 0-

100% 
• Average number of non-classroom contacts per student 
• Symptomatic testing rate 

Except for incursion rate and compliance with test-to-stay, these are provided in the appendix. 

 

Table 1: Model parameters related to schools 
Parameter area Estimate Source 
Primary school   

Average school size 298 
Number of primary students (2,267,564 in 2020; ABS [7] Table 
42b) divided by number of Primary + Primary/secondary schools 
(6249+1363 in 2021; ABS [7] Table 35b). 

Average class size 22 Average class size of primary schools. Victorian government [8] 

Average number of student-student non-classroom 
contacts per day, per student 2 

Assumption; tested in sensitivity analysis. This impacts the 
efficacy of test-to-stay of class contacts verses close contacts or 
entire school. 

Average number of teacher-teacher contacts per day, 
per teacher 20 Number of FTE primary teachers (152,281 in 2020; ABS [7]) 

divided by number of primary schools (6249+1363) 
Secondary school   

Average students per school 622 
Number of secondary students (1,738,083 in 2020; ABS [7] 
Table 42b) divided by number of Secondary + 
Primary/secondary schools (1433+1363; [7] Table 35b) 

Average teacher/student ratio 12 ABS data. [7] suggesting secondary schools have on average 
12.1 students to one teacher. 

Average number of student-student classroom 
contacts per day 44 

Average class size in secondary school of 22 ([9]; page 354), 
assuming two unique classrooms of contacts per student per 
day. 

Average number of student-student non-classroom 
contacts per day 5 

Assumption; tested in sensitivity analysis. This impacts the 
efficacy of test-to-stay of class contacts verses close contacts or 
entire school. 

Average number of teacher-teacher contacts per day 5 Assumption. 
Average number of teacher-student contacts per day, 
per student 6 Assumes students have six classes per day 

Probability of transmission per contact per day 
(without vaccines or NPIs) 

  

Student-student (primary classroom) 0.25 Delphi process; Scott et al. [2] Measured as relative to 
household transmission per contact - e.g. a typical day's worth 
of contact in school is 75% less likely to result in transmission 
than a typical day's worth of contact at home. Non-classroom 
primary school contacts equivalent to outdoor contacts; 
secondary school classroom contacts halved to account for 
shorter interactions. All transmission probabilities are scaled in 
sensitivity analyses when NPI efficacy is tested. 

Student-student (primary non-classroom) 0.03 
Student-student (secondary class contact) 0.12 

Student-student (secondary close/social contact) 0.12 

Teacher-teacher 0.25 Assumption that transmission risks in schools are equivalent for 
all types of contacts. Note that the model has independent 
parameters to account for differences in susceptibility by age 

Teacher-student (primary) 0.25 
Teacher-student (secondary) 0.12 
Age-susceptibility (relative to 20-49 year old)   
Age 0-4 0.349 

Derived from Davies et al. [10] Age 5-9 0.423 
Age 10-14 0.495 
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Age 15-19 0.599 
Age 20-24 0.846 
Age 24-29 1 
Probability of being symptomatic   
Age 0-9 0.28 

Davies et al. [10] Age 10-19 0.20 
Age 20-29 0.26 
Rapid antigen testing (RAT)   

Sensitivity 0.773 

Muhi et al. [11] Lower bound selected to account for 
inconsistent self-use. Note that PCR is modelled as having 87% 
sensitivity in real world use (systematic review Arevalo-
Rodriguez et al. [12]) 

 

 

Results 

Surveillance strategies, without contact tracing / quarantine 

Even though secondary school students have a greater number of contacts, the chances of an 
incursion leading to zero secondary cases (after 45 days) was greater in secondary schools than in 
primary schools ( 

Figure 3, left green bars) – largely a result of secondary school students being vaccinated.  

Twice weekly screening of teachers had minimal impact on reducing infections in primary schools, and 
only a marginal impact in secondary schools, since teachers make up a small percentage of the school 
community. However, this analysis focuses on transmission within schools, and considered outcomes 
given a random incursion into the school. It therefore does not capture differences between students 
and teachers in their probability of acquiring COVID-19 in the community. The analysis presented here 
likely underestimates the overall benefits of screening (and vaccinating) teachers through preventing 
incursions from taking place. 

Twice weekly screening of students leads to earlier detection of an incursion and reduces the number 
of exposure days in the school. This increases the chances of an incursion leading to no secondary 
infections in both primary and secondary schools, because the index cases are often detected and 
removed from the school before transmission occurs. Screening of students increased the average 
days of face-to-face teaching lost compared with no screening and no contact tracing due to the 
detection of asymptomatic cases; however the days of face-to-face teaching lost were entirely due to 
positive cases isolating.  
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Figure 3: Impact of surveillance strategies on the distribution of outcomes for cumulative infections (left) and 
days of face-to-face teaching lost (right) in a single school following a single incursion. Outcomes are from 
1000 model simulations run for 45 days following first diagnosis. Scenarios assume no contact tracing or 
quarantine (only isolation for positive cases that are detected) and from top to bottom are based on: no 
screening; twice weekly testing of teachers with rapid antigen tests; twice weekly testing of students with rapid 
antigen tests.  

 
 

Contact tracing and quarantine strategies 

Following detection of a case, different responses made some difference to the distribution of 
outcomes. Test-to-stay of classroom contacts was approximately equivalent to 7-day quarantine of 
classroom contacts in both primary and secondary schools, but with a significantly lower number of 
face-to-face teaching days lost (Figure 4).  The incremental benefit of test-to-stay for the entire school, 
in place of just the classroom contacts, was small; however it was sensitive to assumptions about the 
number of non-classroom contacts that students have. 

The effectiveness of test-to-stay was dependent on compliance with the daily rapid antigen testing 
(Figure 5), but even at partial (e.g. 50%) compliance was effective relative to no test-to-stay or 
quarantine. 
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Figure 4: Impact of contact tracing and quarantine strategies on the distribution of outcomes for cumulative 
infections (left) and days of face-to-face teaching lost (right) in a single school following a single incursion. 
Outcomes are from 1000 model simulations run for 45 days following first diagnosis. Scenarios top to bottom: 
no contact tracing; class contacts have 7-day quarantine without / with testing; class contacts test-to-stay with 
rapid antigen tests; entire schools test-to-stay with rapid antigen testing. Top: Primary schools; bottom: 
secondary schools.  

 
 

 
Figure 5: Impact of compliance on the effectiveness of a test-to-stay (TTS) strategy. Left bars: the percentage 
of simulations with more than 20 or 50 cumulative infections after 45 days of first diagnosis, for different 
surveillance strategies and number of initial incursions. Right bars: the percentage of simulations with more than 
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50 or 100 days of face-to-face teaching lost in a single school following the incursions. Outcomes are from 1000 
model simulations run for 45 days following first diagnosis.  

 

Surveillance strategies combined with contact tracing / quarantine 

An additional analysis was undertaken to assess the incremental impact of surveillance strategies 
when contact tracing was in place. Test-to-stay strategy was used as a baseline for this analysis due to 
its superiority to other contact tracing and quarantine strategies in terms of minimizing infections and 
maximizing face-to-face teaching. 

With contact tracing (test-to-stay) in place, twice weekly screening of students still had benefits in 
terms of reducing infections and had additional benefits in terms of reduced face-to-face teaching 
days lost (Figure 6). Since contact tracing is effective at detecting and isolating positive cases once an 
outbreak is identified, larger outbreaks in schools generate more days of face-to-face teaching lost. 
Therefore, by detecting and removing cases earlier, student screening combined with test-to-stay for 
class contacts could reduce the number of downstream infections following an incursion, reduce the 
likely outbreak size, and reduce the average days of face-to-face teaching lost per incursion. Despite 
student screening leading to fewer instances of zero days of face-to-face teaching lost – due to most 
incursions being detected and at least one infected student being isolated – there was also a significant 
reduction in the proportion of simulations where more than 150 days were lost.  

With contact tracing (test-to-stay) in place, the relative benefits of twice weekly screening of students 
on reducing secondary infections in schools and days of face-to-face teaching lost increased as the 
number of incursions increased (Figure 7). 

 

  
Figure 6: Impact of surveillance strategies on the distribution of outcomes for cumulative infections (left) and 
days of face-to-face teaching lost (right) in a single school following a single incursion. Outcomes are from 
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1000 model simulations run for 45 days following first diagnosis. Scenarios assume classroom contacts test-to-
stay and from top to bottom are based on: no screening; twice weekly testing of teachers with rapid antigen 
tests; twice weekly testing of students with rapid antigen tests.  

 

  
Figure 7: Impact of multiple incursions on the benefits of surveillance testing. Left bars: the percentage of 
simulations with more than 20 or 50 cumulative infections after 45 days of first diagnosis, for different 
surveillance strategies and number of initial incursions. Right bars: the percentage of simulations with more than 
50 or 100 days of face-to-face teaching lost in a single school following the incursions. Outcomes are from 1000 
model simulations run for 45 days following first diagnosis. Scenarios assume classroom contacts test-to-stay 
and from top to bottom have: no screening; twice weekly testing of teachers with rapid antigen tests; twice 
weekly testing of students with rapid antigen tests.  

 

Total days of face-to-face teaching gained 

The above outputs relate to the number of face-to-face teaching days lost following a single incursion; 
however, schools will experience ongoing incursions, with an incursion rate influenced by transmission 
in the surrounding community. By early 2022, empirical data will be available to measure the actual 
incursion rate. In the absence of these data, we estimate the incursion rate here to outline how a cost-
effectiveness analysis for screening may be performed. 

Between June and October 2021 in NSW and Victoria approximately 30% of new diagnoses occurred 
in people aged 18 and under, and this was consistent across high and low transmission settings 
(regional NSW: 28.4%, Sydney: 29.9%, Victoria: 30.2%). However, 12-15 year olds only became eligible 
for vaccines from 13 September so this may partly explain this outcome, which may change over time. 

The current relative stability in the proportion of new cases that occur in school-age children makes it 
possible to infer crude estimates of the total number of face-to-face teaching days gained through 
student screening. For a particular community, this could be simplistically estimated by multiplying: 

a) New daily cases in local community (diagnoses/day not in quarantine) 
b) Proportion of new cases that occur in school-age children 
c) School attendance in the community (a mixture of enrollment rates and any other community 

restrictions modifying attendance) 
d) Screening period (days) of testing in schools (e.g. to estimate the potential impact of a term 

of screening) 
e) Average days of in-person learning gained from a single incursion in a single school due to 

screening (i.e. difference in average model outputs from (Figure 6). 
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However, caveats to this approach must be noted. Most notably, stability in the proportion of cases 
occurring in school-age children between June-October is an artefact of the restrictions that were in 
place in NSW and Victoria at that time, particularly those enforcing school closure. There is also 
uncertainty in the percentage of all infections that are diagnosed, which depends on community 
testing rates – this is likely to underestimate incursion rates. Conversely, for communities with high 
transmission and frequent incursions, the outcomes of each incursion may not be independent and 
so this may overestimate the face-to-face teaching days gained. 

 

Example: test-to-stay with/without twice weekly screening 

When comparing test-to-stay with or without twice weekly screening of students, the average number 
of face-to-face teaching days gained per school per incursion is estimated to be (Figure 6): 

• 45 for twice-weekly screening of students in primary schools; 
• 34 for twice-weekly screening of students in secondary schools. 

Using these results, the number of days of face-to-face teaching days gained due to screening have 
been estimated for a population of 100,000 over a 45-day period (Figure 8). 

The greatest number of face-to-face teaching days gained through screening occur when incidence is 
highest.  

 

 
Figure 8: Estimated total days of face-to-face teaching gained through twice weekly student screening for 45 
days of screening in a community with 100,000 population. Example assumes test-to-stay is in place 
alongside the screening. Left: Primary school. Right: secondary school. Assumes 30% of community infections 
are in school-aged children, an average of 45 and 34 days of face-to-face teaching are gained per incursion in 
primary and secondary schools respectively. Outcomes are shown for a range of community infection rates 
and school attendance rates (percentage of school-aged children attending school).   
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Limitations 

The findings presented are derived from an individual-based model, which is an imperfect 
representation of the real world.  

• Mixing within schools in the model is approximated as classroom and non-classroom contacts, 
where students are allocated at random to classrooms and randomly mix with other students 
outside of classrooms. In reality, within-school mixing is likely to include clustering due to subject 
selection and social mixing.  

• Incursion risk was not modelled explicitly and model simulations started from a single assumed 
incursion. Actual incursion rates will depend on community prevalence, vaccination coverage and 
public health restrictions and interventions in place.  

• The initial incursion that was modelled was randomly allocated to a member of the school (student 
or teacher); however, there may be social or other factors that make teachers or older/younger 
students more likely to be exposed in the community, and hence more likely to be the index case 
within the school. 

• These results do not consider early learning or specialized settings (e.g. specialist schools and 
boarding schools) or small rural schools. 

• Model parameters are based on best-available data at the time of writing. Results from new 
studies could change estimates of social mixing, contact networks, adherence to policies, 
quarantine advice, and disease characteristics (e.g. asymptomatic cases), and these could change 
these results. 
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Appendix: Sensitivity analyses 

Non-pharmaceutical Interventions in schools 

The impact of non-pharmaceutical interventions (NPIs; e.g. masks, ventilation) were tested by 
running scenarios where the risk of transmission per contact was reduced by either 25% or 50%. 
NPIs can reduce outbreak risks in schools and reduce the number of days of face-to-face teaching 
lost. 
 

 
Figure 9: Impact of non-pharmaceutical interventions (NPIs) on outbreaks in schools. Red bars: the percentage 
of simulations with more than 20 or 50 cumulative infections after 45 days of first diagnosis. Grey bars: the 
percentage of simulations with more than 50 or 100 days of face-to-face teaching lost in a single school following 
an incursion. Scenarios assume test-to-stay is in place for class contacts and no surveillance testing. 

 
Vaccine coverage in students 
 

 
 
Figure 10: Impact of vaccines for students on outbreaks in schools. Red bars: the percentage of simulations 
with more than 20 or 50 cumulative infections after 45 days of first diagnosis. Grey bars: the percentage of 
simulations with more than 50 or 100 days of face-to-face teaching lost in a single school following an incursion. 
Scenarios assume test-to-stay is in place for class contacts and no surveillance testing. 
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Vaccine coverage in teachers 
Note that the benefits of vaccinating teachers are not fully captured in this analysis, since the model does not 
account for potential reduced incursions as a result of teacher vaccination – only reduced transmission within 
the school once an incursion has already occurred.  
 

 
 
Figure 11: Impact of vaccines for teachers on outbreaks in schools. Red bars: the percentage of simulations 
with more than 20 or 50 cumulative infections after 45 days of first diagnosis. Grey bars: the percentage of 
simulations with more than 50 or 100 days of face-to-face teaching lost in a single school following an incursion. 
Scenarios assume test-to-stay is in place for class contacts and no surveillance testing. 

 

Frequency of surveillance screening 
 

 
Figure 12: Impact of different frequencies of surveillance testing on outbreaks in schools. Red bars: the 
percentage of simulations with more than 20 or 50 cumulative infections after 45 days of first diagnosis. Grey 
bars: the percentage of simulations with more than 50 or 100 days of face-to-face teaching lost in a single school 
following an incursion. Scenarios assume test-to-stay is in place for class contacts. 
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Symptomatic testing rate 
The model has an underlying parameter for the per-day probability that an individual with mild COVID-19 
symptoms will have a test. This parameter plays an important role in determining how long it takes to detect 
an outbreak in scenarios where regular testing of students or teachers are not in place. Hence a sensitivity 
analysis was run to understand what influence this parameter had on key outcomes.  Figure 13 shows that 
maintaining symptomatic testing is important for earlier detection of outbreaks and reduced outbreak size. 
 

 
Figure 13: Impact of symptomatic testing probability on outbreaks in schools. Red bars: the percentage of 
simulations with more than 20 or 50 cumulative infections after 45 days of first diagnosis. Grey bars: the 
percentage of simulations with more than 50 or 100 days of face-to-face teaching lost in a single school following 
an incursion. Scenarios assume test-to-stay is in place for class contacts and no surveillance testing. 

 

Sensitivity to number of non-classroom contacts 

 

 
Figure 14: Impact of assumptions around number of non-classroom contacts per student. Doubled cross-
classroom mixing assumes 4 and 10 non-classroom contacts for primary and secondary school students 
respectively. Maximum cross-classroom mixing assumes 11 and 22 non-classroom contacts for primary and 
secondary school students respectively. Red bars: the percentage of simulations with more than 20 or 50 
cumulative infections after 45 days of first diagnosis. Grey bars: the percentage of simulations with more than 
50 or 100 days of face-to-face teaching lost in a single school following an incursion. Scenarios assume no 
surveillance testing.  
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Appendix: Additional methodological details 

The agent-based model Covasim models the spread of COVID-19 by simulating a collection of agents 
representing people. Each agent is characterised by a set of demographic and disease properties: 

• Demographics: 
o Age (one-year brackets) 
o Household size, and uniquely identified household members 
o Uniquely identified school contacts (for people aged 5-18) 
o Uniquely identified work contacts (for people aged 18-65) 
o Average number of daily community contacts (multiple settings / contact networks 

modelled, described below) 
• Disease properties: 

o Infection status (susceptible, exposed, recovered or dead) 
o Whether they are infectious (no, yes) 
o Whether they are symptomatic (no, mild, severe, critical; with probability of being 

symptomatic increasing with age, and the probability of symptoms being more severe 
increasing with age) 

o Diagnostic status (untested vs tested) 

Transmission is modelled to occur when a susceptible individual is in contact with an infectious 
individual through one of their contact networks. The probability of transmission per contact is 
calibrated to match the epidemic dynamics observed and is weighted according to whether the 
infectious individual has symptoms, and the type of contact (e.g. household contacts are more likely 
to result in transmission than community contacts). Transmission dynamics depend on the structure 
of these contact networks, which are randomly generated but statistically resemble the specific 
setting being modelled. The layers included are described below, and the model parameters values 
are provided for each layer that was included.  
 

Model population 

For this analysis a synthetic model population was initialized comprising of 100,000 people. The age 
and household size structure of the model population was based on the Australian population. 

  
Figure 15: Population age structure and household size distribution [13]. 
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Household contact network: household size and age structure 

The household contact network was set up by explicitly modelling households. The households size 
distribution for Australia [13] was scaled to the number required for the number of agents in the 
simulation. Each person in the model was uniquely allocated to a household. To assign ages, a single 
person was selected from each household as an index, whose age was randomly sampled from the 
distribution of ages of the Household Reference Person Indicator in the 2016 Census [13]. The age of 
additional household members were then assigned according to Australian age-specific household 
contact estimates from Prem et al. [14], by drawing the age of the remaining members from a 
probability distribution based on the row corresponding to the age of the index member. 
 

School contact networks 

Schools and school contact networks were set up as described in the main report.  
 

Work contact networks 

Two different workplace types are included: public facing (e.g. retail, hospitality) and non-public 
facing. Contact networks for non-public facing workplaces were created as a collection of disjoint, 
completely connected clusters for the percentage of people aged 18-65 who worked in those 
settings. The mean size of each cluster was equal to the estimated average number of daily work 
contacts (Table S1). For the percentage of people aged 18-65 who worked in public facing 
workplaces, their workplace networks consisted of a completely connected cluster with other work 
colleagues, as well as each day having a number of random contacts with the community.  
 

Additional contact networks 

An arbitrary number of additional networks can be added. Each network layer requires inputs for: 
the proportion of the population who undertake these activities; the average number of contacts 
per day associated with these activities; the risk of transmission relative to a household contact 
(scaled to account for (in)frequency of some activities such as pubs/bars once per week); relevant 
age range; type of network structure (random, clustered, or specialized [as per schools/workplaces]); 
and effectiveness of quarantine and contact tracing interventions. Parameters for the networks 
currently in the model are in Tables S1 and S2.  
 

Parameter values for each contact network 

Tables S1 and S2 show the parameters that define each contact network in the model. Unless 
otherwise noted, parameters are derived in [2] from a mix of published and grey literature and a 
Delphi parameter estimation process. The columns refer to: 
• Network structure type: Clustered refers to a network structure comprised of disjoint, 

completely connected groups of contacts. Random refers to individuals being allocated 
connections to anyone else in the network. Random networks are also dynamic and regenerated 
each day. Public facing networks are a combination of completely connected clusters for staff, 
who are then connected to random community members 
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• Mean contacts: The average number of contacts per person in each network. Each person in the 
model has their individual number of contacts draw at random from a Poisson distribution with 
these values as the mean. For the social network layer, a negative binomial distribution was used 
with dispersion parameter 2 to account for a longer tail to the distribution. 

• Mean public-public contacts: For the percentage of people who participate in an activity, the 
average number of contacts they have with other members of the public (draw at random from 
a Poisson distribution with these values as the mean)  

• Mean public-staff contacts: For the percentage of people who participate in an activity, the 
average number of contacts they have with staff (draw at random from a Poisson distribution 
with these values as the mean)  

• Relative transmission risk: The transmission probability per contact is expressed relative to 
household contacts, and reflects the risk of transmission depending on behaviour. For example, 
a casual contact in a public park is less likely to result in a transmission event compared to a 
contact on public transport. Similarly, the relative transmission risks between staff-staff, public-
public and staff-public are characterised for public-facing workplaces. 

• Quarantine effect: If a person is quarantined, the transmission probability is reduced by this 
factor. For example, an individual on quarantine at home would likely not work or use public 
transport, but they may still maintain their household contacts.  

• Population proportion: Each network will only include a subset of the population e.g. every 
person has a household, but not every person regularly uses public transport. 

• Age bound: Each network will only include agents whose age is within this range. 
• Contact tracing probability: Probability that each contact can be notified in order to quarantine 
• Effectiveness of quarantine and isolation: When a close contact is asked to quarantine for 14 

days, or a confirmed case asked to isolate while they are infected, these parameters represent 
he effectiveness of at reducing transmission through the specific networks. For example 
quarantine is assumed to have no impact on household transmission and greater impact on 
other contacts, reflecting compliance. 

 
Table S1: Contact parameters for each of the networks in the model. 

Contact network 
Network 
structure 

type* 

Mean 
contacts 

Mean 
public-
public 

contacts 

Mean 
public-

staff 
contacts 

% of 
workforce 

Relative 
transmission 

risk 

Relative 
transmission 

risk (staff- 
staff) 

Relative 
transmission 
risk (public- 

public) 

Relative 
transmissio
n risk (staff-

public) 

% of 
population  

Age 
bound 

House Specialized 4    1.00      

School Specialized          5-17 
Non-retail work Specialized 5   0.80 0.28      

Retail work Public facing 5 8 2 0.11  0.28 0.04 0.04 0.70 12+ 
Community (general) Random 1    0.10    1.00  

Places of worship Clustered 20    0.04    0.11  

Community sport Clustered 30    0.07    0.34 4-30 
Entertainment Public facing 25 8 2 0.02  0.28 0.01 0.01 0.30 15+ 

Cafe/restaurant Public facing 5 8 2 0.02  0.28 0.04 0.04 0.60 12+ 
Pub/bar Public facing 5 8 2 0.03  0.28 0.06 0.06 0.40 18+ 

Public transport Random 25    0.16    0.11 15+ 
Public parks Random 10    0.03    0.60  

Child care Clustered 20    0.25#    0.55 1-6 

Social Random 6 
(disp=2) 

   0.12    1.00 15+ 

Aged care Clustered 12    0.58    0.07 65+ 
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Table S2: Contact tracing parameters for each of the networks in the model. 

Contact network Assumed contact 
tracing probability 

Assumed effectiveness 
of quarantine on 

network 

Assumed effectiveness 
of isolation on 

network 
House 1 0.00 0.80 
School 0.95 0.99 0.99 
Non-retail work 0.95 0.90 0.90 
Retail work 0.95 0.90 0.90 
Community (general) 0.1 0.80 0.80 
Places of worship 0.5 0.99 0.99 
Community sport 0.5 1.00 1.00 
Entertainment 0.5 1.00 1.00 
Cafe/restaurant 0.5 1.00 1.00 
Pub/bar 0.5 1.00 1.00 
Public transport 0.1 0.99 0.99 
Public parks 0.1 1.00 1.00 
Child care 0.95 0.99 0.99 
Social 0.75 0.50 0.80 
Aged care 0.95 0.80 0.80 

 

Contact tracing: non-school contacts 

Following detection of a positive case, the model initiates a contact tracing algorithm. For cases 
detected in schools, this is described in the main report. For cases in the community, the 
testing/contact tracing system was approximated as follows: 

1. Day 0: Test is taken by index case 
2. Day 1 (24 hours following test): Positive test results are returned, index case is notified and enters 

isolation. 
3. Day 2 (48 hours following test being taken^): Contact tracing completed, with contacts having a 

setting-specific probability of being detected (Table S2), reflecting differences in the level of 
difficult in identifying contacts in that network (e.g. households vs public transport contacts). 
Identified contacts are tested and quarantined for 14 days regardless of test results, along with 
their entire households. Contacts are additionally tested on day 11 of quarantine, regardless of 
symptoms. 

4. Day 3 (72 hours following test): Test results for contacts become available, and any contacts who 
returned a positive initial test would then have their contacts traced within the next 24 hours, in 
the same manner as the index case. 

It was assumed that contact tracing deteriorated as case numbers increased. Caps on contact tracing 
assumed: at 0, 25, 75, 150 and 500+ cases per day, 100%, 80%, 50%, 30% or 20% of detected cases 
are subject to the above algorithm. The cap does not apply to household, school or childcare contacts 
who are assumed able to conduct their own tracing.  

 
Virus strain 

The model was based on transmission of the delta variant, with infectiousness calibrated to outcomes 
of the 2021 Victorian epidemic wave. The incubation period was shortened to a mean time from 
exposure to becoming infectious of 3.71 days, compared to 4.50 days for the wild type virus [15].  
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Vaccine properties 

In the model, vaccination acts to reduce the probability of acquiring an infection when a contact occurs 
with an infectious case, as well as the probability of developing symptoms (both mild and severe) for 
people who are vaccinated and become infected. The assumed efficacy values used in this modelling 
are as per the main report. 

The vaccine’s prevention of infection is approximated as “leaky”, meaning that each person vaccinated 
has reduced but non-zero risk of becoming infected based on the vaccine efficacy (as opposed to an 
“all or nothing” vaccine, where 80% efficacy means that 80% of people have perfect protection and 
20% have no protection).  

 

Model calibration 

Model parameters for transmission and testing were calibrated to data on daily new detected cases, 
hospitalisations and ICU from the delta COVID-19 epidemic wave in Melbourne over the July-
September 2021 period [5]. The model was initialised with a population of 100,000 agents, and the 
overall transmission risk per contact (which multiplies the transmission probabilities in Table S1 for 
each layer), the per-day probability of a symptomatic individual seeking testing were varied such that 
the distribution of model outcomes for diagnoses, hospitalizations and number of tests was centred 
near the actual epidemic trajectory. For additional details see [5]. 

For this analysis, the model was initialized with only a single case in a school, as described in the main 
report, however the transmission and testing parameters were based on this previous calibration. 

 


