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Key messages

The focus of this report is on the period from early June up to 1 July 2020. As of 17 July
(the time of public release of this report), we acknowledge that the outbreak in metropolitan
Melbourne (Victoria) is ongoing, and that there are early signs of increasing epidemic activity in
New South Wales, which we are currently investigating and will be the subject of future reports.

Estimates of changes in physical distancing behaviour

• We use data from nationwide surveys and mobility data from technology companies to
estimate trends in macro-distancing and micro-distancing behaviour over time.

• As of 1 July, this analysis suggests that levels of both macro-distancing and micro-
distancing behaviour have waned since peak adherence in early April. See Figures 1–3
and Table 1.

• Encouragingly, there is evidence of decreased levels of population mobility in Victorian
LGAs over the last week of June, most markedly in LGAs containing postcodes where
“Stay at Home” restrictions have been active in response to the current outbreak (Figure
4).

Estimates of current epidemic activity

• We report estimates of local transmission potential from a statistical method which allows
us to distinguish between transmission in the general population and clusters/localised
outbreaks (Figure 5).

• As of 1 July, average state-wide transmission potential is estimated to be above 1 in all
states/territories, except Victoria (See Figure 6 and Table 2).

• In Victoria, the one state with a substantial number of active cases, there is strong evi-
dence for substantial deviation from state-level transmission potential, consistent with a
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substantial cluster or a number of smaller clusters (Figure 7). This has resulted in an
estimated Reff of 1.3 [1.04, 1.7] for active cases in Victoria (97% chance of exceeding Reff

=1), indicative of an active, growing outbreak. However, if this activity can be brought
under control, the state-wide transmission potential of 0.92 [0.81–1.1], suggests that there
is perhaps sufficient maintenance of distancing behaviours to avoid further escalation of
epidemic activity.

• An analysis of the temporal trend of Reff in Victoria since the beginning of the outbreak
(late June) reveals that following an initial sharp rise in Reff from below to well above 1,
the Reff has steadily decreased over the past two weeks. At all times, the Reff has been
above 1, indicative of a growing outbreak. The declining Reff suggests that control is
possible with continued enactment of response measures and community compliance.

Forecasts of the daily number of new local cases

• We report state-level forecasts of the daily number of new local cases up to 3 August,
synthesised from three independent models (known as an ‘ensemble forecast’).

• If local transmission potential remains at its current estimated level (as of 1 July), we
anticipate that daily local case counts will remain very low or zero into August for all
states/territories except Victoria (Figure 9).

• Forecasts for Victoria are highly uncertain at this time. A substantial increasing caseload
into August is possible. A decrease is also plausible (Figures 10 and 11).

Forecasting alternate scenarios of the June outbreak in Victoria

• A scenario analysis was performed to assess the potential impact of alternate scenarios on
the Victorian outbreak.

• Estimates of the Reff of local active cases for Victoria as of 1 July were projected forward
from 4 July through to 3 August for three alternate scenarios:

– Scenario 0: The forecast based on current estimates of local transmission potential

– Scenario 1: State-wide distancing behaviour returned to levels estimated on 13 May

– Scenario 2: State-wide distancing behaviour returned to peak levels of adherence
(which is estimated to have occurred in Victoria on 13 April)

– Scenario 3: Overall public health response at peak level of impact (Component 2 of
Reff from 29 March and Component 1 of Reff from 13 April)

• If peak levels of transmission mitigation (Scenario 3) were achieved, this would result in
a rapid decline in cases over the coming month (Figure 15). However, more likely is an
intermediate effect (Scenario 1 or 2) in which control is achieved but with slowly declining
epidemic activity over the next month (Figures 13 and 14). Note: even with improved
transmission mitigation, epidemic growth is possible (upper credible intervals in Figures
13 and 14).
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Estimating trends in distancing behaviour

Overview

To investigate the impact of distancing measures on SARS-CoV-2 transmission, we distinguish
between two types of distancing behaviour: 1) macro-distancing i.e., reduction in the rate of
non-household contacts; and 2) micro-distancing i.e., reduction in transmission probability per
non-household contact.

We used data from nationwide surveys to estimate trends in specific macro-distancing (aver-
age daily number of non-household contacts) and micro-distancing (proportion of the population
always keeping 1.5m physical distance from non-household contacts) behaviours over time. We
used these survey data to infer state-level trends in macro- and micro-distancing behaviour over
time, with additional information drawn from trends in mobility data.

Results

This analysis suggests that levels of both macro-distancing and micro-distancing behaviour
peaked around 8–12 April, and both behaviours have subsequently waned:

• The average daily number of non-household contacts (macro-distancing) reached
its minimum around 12 April and ranged from 2.7–5.7. This is estimated to
have waned to 5.9–11.5 by 1 July. See Figure 1 and Table 1.

• Peak adherence to the 1.5m rule (micro-distancing) occurred around 8 April
and ranged from 60.2%–63.1% across the states/territories. This is estimated
to have waned to 27.9%–39.1% by 1 July. See Figure 2 and Table 1.

Increased population mobility and non-household contact rates (macro-distancing) are ex-
pected given the easing of restrictions since early May. However, keeping 1.5m away from others
(micro-distancing) has remained the public health advice over this period.

Table 1: Left columns: estimates of the average daily number of non-household contacts (macro-
distancing) at peak adherence on around 12 April and as of 1 July for each state/territory.
Right columns: estimates of self-reported adherence to the 1.5m rule (micro-distancing) at
peak adherence on around 8 April and as of 1 July for each state/territory.

Non-household contacts Adherence to 1.5m rule
State Peak [90% CrI] 1 July [90% CrI] Peak [90% CrI] 1 July [90% CrI]

ACT 2.9 [2.7,3.2] 7.5 [7.2,7.9] 61.9% [58.8,64.4] 32.3% [28.0,36.2]
NSW 3.2 [3.1,3.5] 8.1 [7.6,8.6] 63.1% [61.4,64.9] 35.9% [33.7,38.1]
NT 5.7 [5.2,6.2] 11.5 [10.7,12.3] 60.2% [54.5,63.6] 27.9% [20.9,33.9]
Qld 4.3 [4.1,4.5] 8.6 [8.3,9] 62.4% [60.4,64.3] 39.1% [36.5,41.6]
SA 4.2 [3.8,4.6] 8.2 [7.7,8.5] 61.2% [58.6,63.5] 33.5% [31.0,35.9]
Tas 3.4 [2.9,4.0] 7.5 [6.9,7.8] 62.6% [59.9,65.2] 37.1% [33.3,41.3]
Vic 2.7 [2.5,2.9] 5.9 [5.7,6.1] 62.8% [61.1,64.6] 35.9% [33.7,38.1]
WA 4.3 [4.0,4.6] 9.4 [8.8,10.0] 61.5% [59.0,63.7] 31.2% [28.7,33.6]

These state-level macro- and micro-distancing trends were then used in the model of Reff to
inform the reduction in non-household transmission rates (Figures S5 and S6).
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Population mobility analysis

Overview

A number of data streams provide information on mobility before and in response to COVID-19
across Australian states/territories. Each of these data streams represents a different aspect
of population mobility, but they show some common trends — reflecting underlying changes
in behaviour. We use a latent variable statistical model to simultaneously analyse these data
streams and quantify the underlying behavioural variables. Full details of this analysis is pro-
vided in our Technical Report dated 15 May 2020 (https://www.doherty.edu.au/about/
reports-publications).

Results

The model detects a decline in the physical distancing variable over time (i.e., increasing mixing)
since the date of peak adherence to these measures, ≈ 2 April (see Figure 3). Specifically,
by 1 July, the impact of physical distancing on time at parks is expected to have
reduced by 69% on average across states (ranging from 26% in Tas to 100% in
ACT, NT, and Qld), the effect on requests for driving directions by 90% (49% in
Tas to 100% in ACT, NSW, NT, Qld, and WA), and the effect on time at transit
stations by 37% (25% in Vic to 44% in NSW).

The largest reductions in the impacts of physical distancing are evident in mobility data
streams for lower transmission risk activities, such as time at parks. There is also a clear reduc-
tion in data streams representing higher-risk activities, such as time at workplaces. However,
these mobility data do not indicate whether the increase in higher transmission risk activities
is mitigated by other behaviours that are not measured by these metrics — such as reducing
contacts and adherence to the 4m2 rule. In other words, while changes in these mobility data
streams are useful for detecting changes in macro-distancing behaviour, they do not capture
changes in micro-distancing behaviour.

Plots of each data stream and our model fits for each state and territory are shown in the
Appendix (Figures S8–S14)
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Figure 1: Estimated trends in macro-distancing behaviour, i.e., reduction in the daily rate of
non-household contacts, in each state/territory (dark purple ribbons = 50% credible intervals;
light purple ribbons = 90% credible intervals). Estimates are informed by state-level data from
two surveys conducted by the national modelling group in early April and early May, and five
BETA surveys conducted weekly from late May to late June (indicated by the black lines and
grey rectangles), and an assumed pre-COVID-19 daily rate of 10.7 non-household contacts taken
from previous studies. The width of the grey boxes corresponds to the duration of each survey
wave (around 4 days) and the green ticks indicate the dates that public holidays coincided
with survey waves (when people tend to stay home, biasing down the number of non-household
contacts reported on those days). Note that the apparent increase in contacts in the second
survey in Tas and WA is a statistical artefact due to the small sample sizes (100 in WA, 21 in
Tas) which happen to contain two respondents reporting 100+ contacts. In general, estimates
depicted by the grey rectangles are very sensitive to individuals with high numbers of contacts.
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Figure 2: Estimated trends in micro-distancing behaviour, i.e. reduction in transmission prob-
ability per non-household contact, in each state/territory (dark purple ribbons = 50% credible
intervals; light purple ribbons = 90% credible intervals). Estimates are informed by state-level
data from 14 nationwide surveys conducted weekly by BETA from late March to late June
(indicated by the black lines and grey boxes). The width of the grey boxes corresponds to the
duration of each survey wave (around 4 days).
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Figure 3: Percentage change compared to a pre-COVID-19 baseline of three key mobility data
streams in each Australian state and territory up to 1 July. Solid vertical lines give the dates of
three physical distancing measures: restriction of gatherings to 500 people or fewer; closure of
bars, restaurants, and cafes; restriction of gatherings to 2 people or fewer. The dashed vertical
line marks 1 July, the most recent date for which some mobility data are available. Purple
dots in each panel are data stream values (percentage change on baseline). Solid lines and grey
shaded regions are the posterior mean and 95% credible interval estimated by our model of the
latent behaviours driving each data stream. Plots of each data stream and our model fits for
each state and territory are shown in the Appendix (Figures S8–S14).
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LGA-level population mobility analysis for Victoria

Overview

Facebook provide access to several aggregated and anonymised data sets on mobility for hu-
manitarian use via their Data for Good program (https://dataforgood.fb.com). To preserve
privacy, data are aggregated to the level of map tiles (which range in size from 0.6 km2 to 4
km2) or administrative regions (corresponding to Local Government Areas), and data are not
provided for any tiles or regions containing a small number of users (10 to 300, depending on
the data set). Here we use a movement range data set which records the proportion of Facebook
users who “stay put” over the course of a day (24 hour period) aggregated by LGA.

Results

We report the proportion of users who “stayed put” each day between Saturday 29 February
2020 and Sunday 4 July 2020 (the latest date at which data are available) for each LGA in
Victoria (Figure 4).

The proportion of people “staying put” increased dramatically over March, reaching a peak
around Easter, and levelled off over April. From the beginning of May, this proportion steadily
decreased into June. Over the past one to two weeks (i.e., since late June), the proportion of
people staying put in Greater Melbourne LGAs has increased compared to the preceding three
weeks, most markedly in LGAs containing postcodes where “Stay at Home” advice has been in
place in response to the June outbreak.
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Figure 4: Proportion of Facebook users who “stayed put” each day between Saturday 29 Febru-
ary 2020 and Sunday 4 July 2020 (the latest date at which data are available). Each line
represents a single Victorian LGA. Red lines are Brimbank, Hume, Moreland and Maribyrnong
(i.e., LGAs containing postcodes where “Stay at Home” advice has been in place in response
to the June outbreak). Grey lines are all other Greater Melbourne LGAs. Grey vertical bars
indicate weekend and Victorian public holidays. Red and green dotted vertical lines indicate
the timing of government announcements increasing or decreasing (respectively) restrictions on
movement and gatherings.
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Estimating local transmission potential

We separately model local to local transmission (Figure 8) and import to local transmission for
each state/territory using two components:

1. the average state-level trend in Reff driven by population-wide interventions (specifi-
cally changes in macro- and micro-distancing behaviour, surveillance measures, and quar-
antine of overseas arrivals);

2. short-term fluctuations in Reff in each state/territory to capture stochastic dynamics
of transmission, such as clusters of cases and short periods of low transmission.

We have previously reported on a version of this model with three model components
(Technical Report dated 15 May 2020, available from: https://www.doherty.edu.au/about/
reports-publications) where Component 1 represented national trends in local transmission
due to distancing behaviour. With state-level macro- and micro-distancing survey data now
available, we have simplified the model structure. The model now consists of two components:
state-level effects of distancing behaviour, and temporal variation representing clusters of cases.

Component 1 now reflects the average local transmission potential at state level (Figure 6),
and Component 2 (previously Component 3) captures transmission within the sub-populations
that have the most active cases at a given point in time (Figure 5). Component 2 is therefore
useful for estimating the specific (heightened) transmission among clusters of cases in high-
transmission environments — such as in healthcare workers in Tasmania and in meat processing
workers in Victoria — but does not reflect changes in state-wide transmission potential (Figure
7).

Note that Component 1 for local to local transmission now also incorporates the impact
of improvements in surveillance on transmission rates. Using data on the number of days
from symptom onset to testing for cases, we estimate the proportion of cases that are tested
(and therefore advised to isolate) by each day post-infection. We quantify how these times-to-
detection have changed over time, and therefore how earlier isolation of cases due to improve-
ments in contact tracing and clinical screening has reduced statewide Reff for local to local
transmission (Figure S4).

Interpretation

Where there is epidemic activity, local transmission potential of active cases (Component 1&2)
is to be interpreted as the effective reproduction number, Reff . In the absence of epidemic
activity, Component 1&2 represents the expected amount of onward transmission from any
given member of the population if they were to become infectious. In contrast, Component 1
represents the average of this over the state population, indicating the potential for the virus,
if it were present, to establish and maintain community transmission (> 1) or otherwise (< 1).

Note that Component 1&2 can be higher or lower than the estimate of Component 1. In
the increasing phase of a localised outbreak, it will be higher than Component 1. In the
decreasing phase of a localised outbreak, Component 1&2 will be lower than Component 1 due
to public health interventions, local depletion of susceptibles and/or other transmission factors
that decrease the number of offspring from active cases associated with the cluster compared
to that from other cases in the community.

Results

As of 1 July, in all Australia states/territories other than Victoria, average state-wide local
transmission potential (Component 1) is estimated to be above 1 (Figure 6 and Table 2). For
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those states/territories, this indicates that there is potential for the virus to establish itself in
the population and lead to sustained community transmission.

In Victoria, the one state with a substantial number of active cases, there is strong evidence
for substantial deviation from state-level transmission potential, consistent with a substantial
cluster or a number of smaller clusters (Figure 7). This has resulted in an estimated Reff of
1.3 [1.04, 1.7] for active cases in Victoria (97% chance of exceeding Reff =1), indicative of an
active, growing outbreak. However, if this activity can be brought under control, the state-wide
transmission potential of 0.92 [0.81–1.1], suggests that there is perhaps sufficient maintenance
of distancing behaviours to avoid further escalation of epidemic activity.

An analysis of the temporal trend of Reff in Victoria since the beginning of the outbreak
reveals that following an initial sharp rise in Reff from below to well above 1, the Reff has
steadily decreased over the past two weeks. At all times, the Reff has been above 1, indicative
of a growing outbreak. The declining Reff suggests that control is possible with continued
enactment of response measures and community compliance.

Note that by the time of public release of this report, we estimate an Reff of 1.39 [1.10,
1.85] for active cases in Victoria as of 13 July (99% chance of exceeding Reff = 1). In New
South Wales, we now estimate that there is an active, growing outbreak. This has resulted in
an estimated Reff of 1.28 [0.89, 1.82] for active cases in New South Wales as of 13 July (88%
chance of exceeding Reff =1).

Table 2: Estimates of local transmission potential [90% credible intervals] resulting from Com-
ponent 1 (state-wide) and Component 1&2 (current active cases only) by state/territory. The
total number of observed local cases with a symptom onset date recorded (or inferred) to be
recorded from 22 June–6 July inclusive (i.e., past 14 days) is also shown, indicative of the
number of local active cases.

Local-to-local transmission potential
State-wide Current active cases only Local cases

State Reff [90% CrI] P (Reff > 1) Reff [90% CrI] P (Reff > 1) 22 June–6 July
ACT 1.08 [0.94, 1.3] 0.85 1.1 [0.59, 2.0] 0.64 0
NSW 1.09 [0.94, 1.3] 0.84 1.0 [0.55, 1.6] 0.49 1
NT 1.51 [1.27, 1.8] 1.00 1.5 [0.78, 2.9] 0.90 1
QLD 1.06 [0.90, 1.2] 0.72 1.0 [0.46, 2.0] 0.52 1
SA 1.14 [0.99, 1.3] 0.94 1.1 [0.64, 2.0] 0.69 0
TAS 1.00 [0.85, 1.2] 0.51 1.0 [0.30, 3.2] 0.50 0
VIC 0.92 [0.81, 1.1] 0.17 1.3 [1.04, 1.7] 0.97 651
WA 1.26 [1.09, 1.5] 0.99 1.3 [0.67, 2.6] 0.80 0
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Figure 5: Depiction of the relationship between Reff analysis components. TTD = time from
symptom onset to detection.
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Figure 6: Estimate of local transmission potential averaged over state/territory population
(Component 1); i.e., removing short-term variation due to clusters (Component 2). Light green
ribbon=90% credible interval; dark green ribbon = 50% credible interval. Estimates are made
up to 1 July, based on cases with inferred infection dates up to and including 1 July. Solid
grey vertical lines indicate key dates of implementation of various physical distancing policies.
This includes the combined effect of macro- and micro-distancing behaviours and surveillance
measures.
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Figure 7: Deviation of transmission potential in local active cases (e.g., clusters) from state-
level local transmission potential (Component 2) for each state/territory (light pink ribbon=90%
credible interval; dark pink ribbon = 50% credible interval. Estimates are made up to 1 July
based on cases with inferred infection dates up to and including 1 July (due to a delay from
infection to reporting, the trend in estimates after 1 July reflects the average range of deviations
for that state, indicated by the grey shading). Solid grey vertical lines indicate key dates of
implementation of various physical distancing policies.
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Figure 8: Estimate of average local transmission potential of active cases (Component 1&2)
for each state/territory (light green ribbon=90% credible interval; dark green ribbon = 50%
credible interval). Estimates are made up to 1 July based on cases with inferred infection dates
up to and including 1 July (due to a delay from infection to reporting, the trend in estimates
after 1 July is inferred from mobility data, indicated by the grey shading). Solid grey vertical
lines indicate key dates of implementation of various physical distancing policies. Black dotted
line indicates the target value of 1 for the effective reproduction number required for control.
Where there is epidemic activity, this quantity may be interpreted as the effective reproduction
number, Reff . In the absence of epidemic activity, this quantity reflects the ability for the virus,
if it were present, to establish and maintain community transmission (> 1) or otherwise (< 1).
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Forecasts of the daily number of new confirmed cases

We report forecasts of the daily number of new confirmed cases for each Australian state/territory
up to 3 August— synthesised from three independent models (known as an ‘ensemble forecast’).

Ensemble forecasts are more accurate than any individual forecast alone — biases and vari-
ances in each model that result from different modelling choices balance against each other to
improve predictions. Hence, ensemble forecasts tend to produce improved estimates of both the
central values, as well as improved estimates of the plausible yet unlikely forecasts (uncertainty).
Here, the ensemble has been generated by equally weighting the forecasts from each model. In
future weeks, we will continue to improve the ensemble performance by updating the weights
for each model based on their past-performance.

A brief description of each method incorporated in the ensemble is given below:

• SEEIIR Forecast: A stochastic susceptible-exposed-infectious-recovered (SEEIIR) com-
partmental model that incorporates changes in local transmission potential via the esti-
mated time-varying effective reproduction number (as shown in Figure 8). Details can be
found in our technical report at:
https://www.doherty.edu.au/about/reports-publications.

• Probabilistic Forecast: A stochastic epidemic model that accounts for the number of
imported-, symptomatic- and asymptomatic-cases over time. This model estimates the
effective reproduction number corresponding to local and imported cases, and incorporates
mobility data to infer the effect of macro-distancing behaviour. This model captures
variation in the number and timing of new infections via probability distributions. The
parameters that govern these distributions are inferred from the case and mobility data
(e.g., mean number of imported cases).

• Time-Series Forecast: A time-series model that does not account for disease transmis-
sion dynamics, but rather uses recent daily case counts to forecast cases into the future.
Parameters of this ‘autoregressive’ model are estimated using global data accessible via
the Johns Hopkins COVID-19 repository. Case counts from a specific time window prior
to the forecasting date (the present) are used for model calibration. The number of days
within this time window is chosen to optimise projections for Australian data.

The SEEIIR and Probabilistic Forecasts explicitly incorporate dynamics of disease trans-
mission and the impact of public health measures on transmission over time via Reff . The
Time-Series Forecast does not explicitly incorporate either of these factors. The Time-Series
Forecast is expected to accurately forecast new daily case numbers over a shorter time period,
whereas disease-specific models are anticipated to provide more accurate forecasts several weeks
into the future. All forecasts assume that current public health measures will remain in place
and that public adherence to these measures will be consistent into the future.

Results

If local transmission potential remains at its current estimated level (as of 1 July), we anticipate
that daily local case counts will remain very low or zero into August for all states/territories,
except Victoria (Figures 9 and 10).

Forecasts for Victoria are highly uncertain at this time. Of the three models in the ensemble:
the SEEIIR Forecast predicts a substantial increase in caseload into August, the Probabilistic
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Forecast predicts a moderate increase, and the Time-Series Forecast suggests that a decrease is
also plausible (Figure 11).

Note that the forecast for New South Wales does not take into account the spike in cases
observed in early July which has resulted in an estimated Reff of 1.28 [0.89, 1.82] as of 13 July.
The forecast in this report no longer reflects our expectations of case loads for New South Wales
into August, given that an outbreak has been seeded.
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Forecasts of the daily number of new local cases for each state/territory

Figure 9: Time series of new daily local cases of COVID-19 estimated from the forecasting
ensemble model for each jurisdiction (50–90% confidence intervals coloured in progressively
lighter blue shading) from 6 July to 3 August. The observed daily counts of locally acquired
cases are also plotted by date of symptom onset (grey bars). Recent case counts are inferred to
adjust for reporting delays (black dots).
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Figure 10: Time series of new daily local cases of COVID-19 estimated in Victoria from the
forecasting ensemble model (50–90% confidence intervals coloured in progressively lighter blue
shading) from 6 July to 3 August. Note that the y-axis is truncated at 1000 daily new cases
(i.e., zoomed in on lower projected cases counts). Recent case counts are inferred to adjust for
reporting delays (black dots).
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Figure 11: Panels show time series of new daily local cases of COVID-19 estimated in Victoria
from the three forecasting models in the ensemble (50–90% confidence intervals coloured in
progressively lighter shading), from 6 July to 3 August. Recent case counts are inferred to
adjust for reporting delays (black dots).
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Forecasting alternate scenarios of the June outbreak in Victoria

A scenario analysis was performed to assess the potential impact of alternate scenarios on the
Victorian outbreak. Estimates of the Reff of local active cases for Victoria as of 1 July were
projected forward through to 3 August for three alternate scenarios:

• Scenario 0: The forecast based on current estimates of local transmission potential

• Scenario 1: State-wide distancing behaviour returned to levels estimated on 13 May

• Scenario 2: State-wide distancing behaviour returned to peak levels of adherence (which
is estimated to have occurred in Victoria on 13 April)

• Scenario 3: Overall public health response at peak level of impact (Component 2 of Reff

from 29 March and Component 1 of Reff from 13 April)

Estimated values of Reff up to 1 July and observed cases were then used as inputs into a
mathematical model of transmission dynamics (specifically, the SEEIIR Forecast model). The
model was projected forward from 4 July up to 3 August using the projected values of Reff for
each scenario to forecast the daily number of new cases in Victoria.

Results
If peak levels of transmission mitigation (Scenario 3) were achieved, this would result in a rapid
decline in cases over the coming month (Figure 15). However, more likely is an intermediate
effect (Scenario 1 or 2) in which control is achieved but with slowly declining epidemic activity
over the next month (Figures 13 and 14). Note: even with improved transmission mitigation,
epidemic growth is possible (upper credible intervals in Figures 13 and 14).

Because our model operates at the state-level, the appropriate interpretation of our results
is that the enhanced distancing measures are geographically co-located with areas of high trans-
mission. We note that this may not be the case due to both people’s behaviour and the time
delay between transmission activity and case reporting, leading to a mismatch between listed
and actual areas of heightened transmission. Note: we plot observed and forecast infections by
date of symptom onset, which differs from notification and reporting dates.
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Figure 12: Scenario 0: Forecast of new daily local cases of COVID-19 estimated from the
SEEIIR forecasting model (50–90% confidence intervals coloured in progressively lighter blue
shading), from 4 July to 3 August, based on current estimates of local transmission
potential. The observed daily counts of locally acquired cases are also plotted by date of
symptom onset (grey bars).

0

5000

10000

15000

20000

25000

1−Mar 15−Mar 29−Mar 12−Apr 26−Apr 10−May 24−May 7−Jun 21−Jun 5−Jul 19−Jul 2−Aug
Date of Symptom Onset

D
aily N

ew
 C

ases

90%

80%

70%

60%

50%

700

Figure 13: Scenario 1: Forecast of new daily local cases of COVID-19 estimated from the
SEEIIR forecasting model, from 4 July to 3 August, assuming that state-wide distancing
behaviour returned to levels estimated on 13 May. The observed daily counts of locally
acquired cases are also plotted by date of symptom onset (grey bars).
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Figure 14: Scenario 2: Forecast of new daily local cases of COVID-19 estimated from the
SEEIIR forecasting model (50–90% confidence intervals coloured in progressively lighter blue
shading), from 4 July to 3 August, assuming state-wide distancing behaviour returned
to peak levels of adherence. The observed daily counts of locally acquired cases are also
plotted by date of symptom onset (grey bars).
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Figure 15: Scenario 3: Forecast of new daily local cases of COVID-19 estimated from the
SEEIIR forecasting model (50–90% confidence intervals coloured in progressively lighter blue
shading), from 4 July to 3 August, assuming that the overall public health response
returned to peak levels of impact. The observed daily counts of locally acquired cases are
also plotted by date of symptom onset (grey bars).
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For full methodological details on the population mobility analysis, please refer to our previous
Technical Report (dated 15 May 2020) available at the following link:

https://www.doherty.edu.au/about/reports-publications

25

https://www.doherty.edu.au/about/reports-publications


Supplement: model of local transmission potential

Overview

We developed a new model to estimate components of the effective reproduction number result-
ing from transmission from locally acquired cases and from overseas acquired cases. This model
enables us to 1) estimate the relative temporal variation in transmission from local to local cases
and from overseas-acquired to local cases and 2) quantify the relative impacts of national-level
interventions on transmission in Australia. Whilst both locally and overseas acquired cases
contribute to Australia’s case count, the transmission rates from each of these groups differs
as they are each targeted by different interventions. Quarantine of overseas arrivals modifies
the transmission rates of overseas acquired cases only, and physical distancing measures modify
transmission rates of locally acquired cases. By splitting Reff between these two groups, the
model enables us to estimate the relative impacts of various response policies on transmission
in Australia, namely quarantine of overseas arrivals and physical distancing of the general pop-
ulation.

We model local to local transmission and import to local transmission for each state/territory
using two components:

1. the average state-level trend in Reff driven by interventions (specifically changes in
macro- and micro-distancing behaviour over time and quarantine of overseas arrivals);

2. short-term fluctuations in Reff in each state/territory to capture stochastic dynamics
of transmission, such as clusters of cases and short periods of low transmission.

Modelling the impact of physical distancing

We model the impact of physical distancing on transmission, quantifying how key distancing
behaviours have changed over time — informed by both surveys and mobility data — and
using an epidemiological model to relate those changes to transmission. Specifically, we con-
sider the average number of non-household contacts for the population of each state/territory
over time (termed macro-distancing), and the proportion of those state populations adhering to
hygienic behaviour (termed micro-distancing, and compliance with the ‘1.5m rule’ as an indica-
tor). The population mobility analysis reported in previous reports identified a common trend
in all available data streams, whereby population mobility was reduced around the dates that
three physical distancing restrictions were implemented. Both macro- and micro-distancing be-
haviours are assumed to have changed following the same temporal pattern. But since reaching
their peak, both forms of distancing have subsequently waned, and it is unlikely that these
are well reflected by any one mobility metric. Using nationally-representative surveys, we can
directly estimate the levels of macro- and micro-distancing in each state and how they have
changed over time. These macro- and micro-distancing trends inform how the average state-
level trends in Reff have changed, even in states where there are no longer any active cases.
The resulting measures of transmission potential indicate how rapidly the disease could spread
if re-introduced to those states/territories.

Modelling the impact of quarantine of overseas arrivals

We model the impact of quarantine of overseas arrivals via a ‘step function’ reflecting three
different quarantine policies: self-quarantine of overseas arrivals from specific countries prior to
March 15; self-quarantine of all overseas arrivals from March 15 up to March 27; and mandatory
quarantine of all overseas arrivals after March 27 (Figure S1). We make no prior assumptions
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about the effectiveness of quarantine at reducing Reff import, except that each successive change
in policy increased that effectiveness.

Figure S1: Nationwide average reduction in Reff that is due to quarantine of overseas arrivals
estimated from the Reff model (light orange ribbon=90% credible interval; dark orange ribbon
= 50% credible interval). Note that this trend does not capture time-varying fluctuations in
Reff in each state/territory. Solid grey vertical lines indicate key dates of implementation of key
response policies. Black dotted line indicates the target value of 1 for the effective reproduction
number required for control. Note: A simple but näıve upper bound on Reff import can be
computed by assuming that all locally acquired cases arose from imported cases, and therefore
computing the ratio of the numbers of local and imported cases. This results in a maximum
possible value of the average Reff import of 0.57.

Model limitations

Note that while we have data on whether cases are locally acquired or overseas acquired, no
data are currently available on whether each of the locally acquired cases were infected by an
imported case or by another locally acquired case. This data would allow us to disentangle
the two transmission rates. Without this data, we can separate the denominators (number of
infectious cases), but not the numerators (number of newly infected cases) in each group at
each point in time. The model we have developed enables us to estimate these effects from the
currently available data but missing data reduces the precision of these estimates. For example,
we currently cannot account for state-level variation in the impacts of quarantine of overseas
arrivals or connect them to specific policies.

Should these data become available, this method will enable us to provide more precise
estimates of Reff .

Model description

We developed a semi-mechanistic Bayesian statistical model to estimate Reff , or R(t) hereafter,
the effective rate of transmission of of SARS-CoV-2 over time, whilst simultaneously quantifying
the impacts on R(t) of a range of policy measures introduced at national and regional levels in
Australia.
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Observation model
A straightforward observation model to relate case counts to the rate of transmission is to assume
that the number of new locally-acquired cases NL

i (t) at time t in region i is (conditional on its
expectation) Poisson-distributed with mean λi(t) given by the product of the total infectiousness
of infected individuals Ii(t) and the time-varying reproduction rate Ri(t):

NL
i (t) ∼ Poisson(λi(t)) (1)

λi(t) = Ii(t)Ri(t) (2)

Ii(t) =
t∑

t′=0

g(t′)Ni(t
′) (3)

Ni(t
′) = NL

i (t) +NO
i (t) (4)

where the total infectiousness, Ii(t), is the sum of all active infections Ni(t
′) — both locally-

acquired NL
i (t′) and overseas-acquired NO

i (t′) — initiated at times t′ prior to t, each weighted
by an infectivity function g(t′) giving the proportion of new infections that occur t′ days post-
infection. The function g(t′) is the probability of an infector-infectee pair occurring t′ days after
the infector’s exposure, i.e., a discretisation of the probability distribution function correspond-
ing to the generation interval.

This observation model forms the basis of the maximum-likelihood method proposed by
White and Pagano (2007) [1] and the variations of that method by Cori et al. (2013) [?],
Thompson et al. (2019) [2] and Abbott et al. (2020) [3] that have previously been used to
estimate time-varying SARS-CoV-2 reproduction numbers in Australia.

We extend this model to consider separate reproduction rates for two groups of infectious
cases, in order to model the effects of different interventions targeted at each group: those with
locally-acquired cases ILi (t), and those with overseas acquired cases IOi (t), with corresponding
reproduction rates RLi (t) and ROi (t). These respectively are the rates of transmission from
imported cases to locals, and from locally-acquired cases to locals. We also model daily case
counts as arising from a Negative Binomial distribution rather than a Poisson distribution to
account for potential clustering of new infections on the same day, and use a time-varying
generation interval distribution g(t′, t) (detailed in Surveillance effect model):

NL
i (t) ∼ NegBinomial(µi(t), r) (5)

µi(t) = ILi (t)RLi (t) + IOi (t)ROi (t) (6)

ILi (t) =

t∑
t′=0

g(t, t′)NL
i (t) (7)

IOi (t) =

t∑
t′=0

g(t,′ t)NO
i (t) (8)

where the negative binomial distribution is parameterised in terms of its mean µi(t) and
dispersion parameter r. In the commonly used probability and dispersion parameterisation with
probability ψ the mean is given by µ = ψr/(1− ψ).

Note that if data were available on the whether the source of infection for each locally-
acquired case was another locally-acquired case or an overseas-acquired cases, we could split
this into two separate analyses using the observation model above; one for each transmission
source. In the absence of such data, the fractions of all transmission attributed to sources of
each type is implicitly inferred by the model, with an associated increase in parameter uncer-
tainty.
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Reproduction rate models
We model the reproduction rates for overseas-acquired and locally-acquired cases in a semi-
mechanistic way. Both reproduction rates are modelled as the product of a deterministic model
of the population-wide transmission potential for that type of case, and a correlated time series
of random effects to represent stochastic fluctuations in the reporting rate in each state over
time:

RLi (t) = R∗i (t)e
εLi (t) (9)

ROi (t) = R∗i (0)Q(t)eε
O
i (t) (10)

For locally-acquired cases, the state-wide average transmission rate at time t, R∗i (t), is given
by a deterministic epidemiological model of population-wide transmission potential that consid-
ers the effects of distancing behaviours. For overseas-acquired cases the population-wide trans-
mission rate at time t, R∗i (0)Q(t), is the baseline rate of transmission (R∗i (0) = R0; local-local
transmission potential in the absence of distancing behaviour or other mitigation) multiplied by
a quarantine effect model, Q(t), that encodes the efficacy of the three different overseas quaran-
tine policies implemented in Australia (described below). The correlated time series of random
effects εLi (t) and εOi (t) represent stochastic fluctuations in these transmission rates in each state.
For overseas-acquired cases, εOi (t) represents any interstate-differences or temporal variations
in quarantine effectiveness that are not explained by the model of national policy. For locally-
acquired cases εLi (t) represents stochastic fluctuations in the reproduction rate among active
cases at each point in time — for example due to clusters of transmission in sub-populations
with higher or lower reproduction rates than the general population.

We model R∗i (t), the population-wide rate of local-local transmission at time t, as the sum
of two components: the rate of transmission to members of the same household, and to mem-
bers of other households. Each of these components is computed as the product of the number
of contacts, and the probability of transmission per contact. The transmission probability is
in turn modelled as a binomial process considering the duration of contact with each person
and the probability of transmission per unit time of contact. This mechanistic consideration
of the contact process enables us to separately quantify how macro- and micro-distancing be-
haviours impact on transmission, and to make use of various ancillary measures of both forms
of distancing:

R∗i (t) = s(t)(HC0(1− (1− p)HD0hi(t)d) +NC0δi(t)d(1− (1− p)ND0)γi(t)) (11)

where s(t) is the effect of surveillance on transmission, due to the detection and isolation
of cases (detailed below), HC0 and NC0 are the baseline (i.e., before adoption of distancing
behaviours) daily rates of contact with, respectively, people who are, and are not, members of
the same household, HD0 and ND0 are the baseline average total daily duration of contacts
with household and non-household members (measured in hours), d is the average duration
of infectiousness in days, p is the probability of transmitting the disease per hour of contact,
hi(t), δi(t), γi(t) are time-varying indices of change relative to baseline of: the duration of
household contacts, the number of non-household contacts, and the transmission probability
per non-household contact; (modifying both the duration and transmission probability per unit
time for non-household contacts).

The first component in equation (11) is the rate of household transmission, and the sec-
ond is the rate of non-household transmission. Note that the duration of infectiousness d is
considered differently in each of these components. For household members, the daily number
of household contacts is typically close to the total number of household members, hence the

29



expected number of household transmissions saturates at the household size; so the number of
days of infectiousness contributes to the probability of transmission to each of those household
members. This is unlikely to be the case for non-household members, where each day’s non-
household contacts may overlap, but are unlikely to be from a small finite pool. This assumption
would be unnecessary if contact data were collected on a similar timescale to the duration of
infectiousness, though issues with participant recall in contact surveys mean that such data are
unavailable.

The parameters HC0, HD0, and ND0 are all estimated from a contact survey conducted in
Melbourne in 2015 [4]. NC0 is computed from an estimate of the total number of contacts per
day for adults from [5], minus the estimated rate of household contacts. Whilst [4] also provides
an estimate of the rate of non-household contacts, the method of data collection (a combination
of ‘individual’ and ‘group’ contacts) makes it less comparable with contemporary survey data
than the estimate of [5].

The expected duration of infectiousness d is computed as the mean of the discrete generation
interval distribution:

d =

∞∑
t′=0

t′g(t, t′) (12)

and change in the duration of household contacts over time hi(t) is assumed to be equivalent to
change in time spent in residential locations in state i, as estimated by the mobility model for
the data stream Google: time at residential. In other words, the total duration of time in contact
with household members is assumed to be directly proportional to the amount of time spent
at home. Unlike the effect on non-household transmission, an increase in macro-distancing is
expected to slightly increase household transmission due to this increased contact duration.

The time-varying parameters δi(t) and γi(t) respectively represent macro- and micro-distancing;
behavioural changes that reduce mixing with non-household members, and the probability of
transmission for each of non-household member contact. We model each of these components,
informed by population mobility estimates from the mobility model and calibrated against data
from nationwide surveys of contact behaviour.

Surveillance effect model
Disease surveillance — both screening of people with COVID-like symptoms and performing
contact tracing — can improve COVID-19 control by placing cases in isolation so that they
are less likely to transmit the pathogen to other people. Improvements in disease surveillance
can therefore lead to a reduction in transmission potential by isolating cases more quickly,
and reducing the time they are infectious but not isolated. Such an improvement changes two
quantities: the population average transmission potential R∗(t) is reduced by a constant rate
s(t); and the generation interval distribution g(t, t′) is shortened, as any transmission events are
more likely to occur prior to isolation.

We model both of these functions using a time-varying estimate of the discrete probability
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distribution over times from infection to detection f(t, t′):

g(t, t′) =
f(t, t′)g∗(t′)

s(t)
(13)

s(t) =
∞∑
t′=0

f(t, t′)g∗(t′) (14)

f(t, t′) =


0 t′ < 3

q(t)/2 3 ≥ t′ < 5

(1− q(t))F (t, t′) t′ ≥ 5

(15)

F (t, t′) = NegBinomial(t′ − 5|µf (t), rf ) (16)

where g∗(t′) is the baseline generation interval distribution, representing times to infection
in the absence of detection and isolation of cases, s(t) is a normalising factor, and f(t, t′) is
modelled as a two-stage hurdle model, where the probability of detection: prior to 3 days post-
infection is zero (insufficient virus would be present to be detected); over the next two days has
a constant probability, and; over each of the subsequent days is equivalent to the probability
mass function of a negative binomial distribution over t′ − 5. Symptom onset is assumed to be
exactly 5 days subsequent to infection, so the time since infection t′ is converted to the time
since symptom onset, t′ − 5, allowing for the time from symptom onset to detection to be up
to 5 days negative.

We used point estimates of probability masses q(t) and F (t, t′) for all t and values of t′ in
{0,1,. . . , 20}, computed as the posterior means of a Bayesian statistical model that was fitted in
a separate modelling step (to observed times τi from symptom onset to first specimen collection
of locally-acquired cases with dates of infection ti). Specimen collection was deemed the most
indicative of the date of isolation, since patients are typically advised to self-isolate once they are
considered a suspected case until they receive a test result, reducing their ability to transmit.
The model was fitted as a two-step hurdle model, with a parameter for the probability of a
negative τi, and parameters for a negative binomial count distribution over non-negative τi:

yi =

{
1 t′i < 0

0 t′i ≥ 0
(17)

yi ∼ Bernoulli(q(ti)) (18)

t′j ∼ NegBinomial(µf (tj), rf ) (19)

logit(q(ti)) = αq + βqz(ti) (20)

log(µf (tj)) = αf + βfz(tj) (21)

logit(z(ti)) = βz(ti − µz) (22)

where yi is an indicator for whether t′i is negative, j indexes only the positive elements of
t′ (i.e. yj = 0), the logit-probability of a negative time (equation (20)) and the log-mean of
non-negative times (equation (21)) are both modelled as linear functions of the same latent
factor, z(·), itself a sigmoidal or logistic function of time with inflection time µz, and rate of
change βz. We assume that any recorded values of ti < −2 are erroneously recorded, and must
represent a date of symptom onset no more than two days later than a positive test result. In
practice, these are rare, so this assumption has negligible impact on the model.

Macro-distancing model
The population-wide average daily number of non-household contacts at a given time can be
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directly estimated using a contact survey. We therefore used data from a series of contact sur-
veys commencing immediately after the introduction of distancing restrictions to estimate δi(t)
independently of case data. To infer a continuous trend of γi(t), we model the numbers of non-
household contacts at a given time as a function of mobility metrics considered in the mobility
model. We use the model estimated trend in five Google metrics of time spent at different types
of location: residential, transit stations, parks, workplaces, and retail and recreation. We use
data on the proportion of contacts in the baseline contact survey [4] that took place at each
of these location types to form a prior distribution over a column vector of weights ω, which
are used to combine these five mobility metrics into a single metric of the relative change in
numbers of contacts. We then multiply this index of relative change by a scaling parameter α
to give the absolute rate of change in non-household contacts from the baseline value:

δi(t) = (ωMi(t))
α (23)

where Mi(t) is a row vector of the estimated values of the five Google mobility indices in
state i at time t.

We estimate the parameters ω and α using a Bayesian model with negative binomial likeli-
hood over NCi,j,t, the number of non-household contacts reported by contact survey respondent
j in state i in the survey wave commencing at time t:

NCi(t) ∼ NegBinomial(µi(t), rNC) (24)

µi(t) = NC0δi(t) (25)

where the negative binomial is parameterised as described above, and rNC is the dispersion
parameter.

Micro-distancing model
Unlike with macro-distancing behaviour and contact rates, there is no simple mathematical
framework linking change in micro-distancing behaviours to changes in non-household trans-
mission probabilities. We must therefore estimate the effect of micro-distancing behaviour on
transmission via case data. We implicitly assume that any reduction in local-to-local trans-
mission that is not explained by changes to the numbers of non-household contacts or the
duration of household contacts, is explained by the effect of micro-distancing on non-household
transmission probabilities.

Whilst it is not necessary to use ancillary data to estimate the effect that micro-distancing
has at its peak, we use behavioural survey data to estimate the temporal trend in micro-
distancing behaviour, in order to estimate to what extent adoption of that behaviour has waned
and how that has affected transmission potential.

We therefore model γt as a function of the proportion of the population adhering to micro-
distancing behaviours. We consider adherence to the 1.5m rule as indicative of this broader suite
of behaviours due to the availability of data on this behaviour in a weekly series of behavioural
survey beginning prior to the last distancing restriction being implemented [?]. We consider the
number m+

i,t of respondents in state i on survey wave commencing at time t replying that they
‘always’ keep 1.5m distance from non-household members, as a binomial sample with sample
size mi,t. We model ci(t), the proportion of the population in state i responding that they always
comply as a function of time, composed of an initial adoption phase, a date of peak compliance,
and a subsequent linear decrease in the rate of adoption. We assume that the temporal pattern
in the initial rate of adoption of the behaviour is the same as for macro-distancing behaviours
— the adoption curve estimated from the mobility model. In other words, we assume that
all macro- and micro-distancing behaviours were adopted simultaneously. However we do not
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assume that these behaviours peaked at the same time or waned at the same rate. The model
for the proportion complying with this behaviour is therefore:

m+
i,t = Binomial(mi,t, ci(t)) (26)

ci(t) = di(t)κ1,i − wi(t)κ2,i (27)

wi(t) =

{
0 t < κ0

(t− κ0)/(T − κ0) t ≥ κ0

(28)

logit(κ1,i) ∼ N(µκ1 , σ
2
κ1

) (29)

logit(κ2,i) ∼ N(µκ2 , σ
2
κ2

) (30)

where di(t) is the latent function for adoption of distancing behaviour, estimated from the
mobility model (scaled from 0 at baseline to 1 at maximum), κ0 is the time of peak compliance,
κ1,i is the proportion in state i complying at peak, and κ2,i is the proportion in state i complying
at time T , the most recent time for which data are available. Each κ1,i and κ2,i is drawn from a
hierarchical distribution over states, enabling states to differ in the peak proportion complying
and in the rate of waning, but sharing information between states. Given ci(t), we model γi(t)
as a function of the degree of micro-distancing relative to the peak:

γi(t) = 1− β(ci(t)/κ1,i) (31)

with β inferred from case data in the main Reff model.

Overseas quarantine model
We model the effect of overseas quarantine Q(t) via a monotone decreasing step function with
values constrained to the unit interval, and with steps at the known dates τ1 and τ2 of changes
in quarantine policy:

Q(t) =


q1 t < τ1

q2 τ1 ≤ t < τ2

q3 τ2 ≤ t
(32)

where q1 > q2 > q3 and all parameters are constrained to the unit interval.

Error models
The correlated time series of errors in the log of the effective reproduction rate for each group
εLi (t) and εOi (t) are each modelled as a zero-mean Gaussian process (GP) with covariance struc-
ture reflecting temporal correlation in errors within each state, but independent between states.
We use a squared exponential covariance function kSE for εOi (t), reflecting the fact that any
temporally-correlated fluctuations in quarantine effectiveness are likely to be comparatively
smooth. For εLi (t) we use a rational quadratic covariance function kRQ, enabling periods of
comparatively smooth variations, with occasional more rapid fluctuations, to represent the sud-
den rapid growth of cases that can occur with a high-transmission cluster. For both εLi (t) and
εOi (t), parameters l1, l2 and α2 which control the temporal range of correlation are assumed
to be the same across states, whilst the magnitude of the deviations can differ between states,
with a hierarchical structure:
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εOi ∼ GP (0, ki,SE(t, t′)) (33)

εLi ∼ GP (0, ki,RQ(t, t′)) (34)

ki,SE(t, t′) = σ2
1 σ

2
i,1 exp

(
−(t− t′)2

2l21

)
(35)

ki,RQ(t, t′) = σ2
2 σ

2
i,2 exp

(
1 +

(t− t′)2

2αl22

)−α2

(36)

Components of local transmission potential
We model the rate of transmission from locally acquired cases as the product of the time-
varying mechanistic model of transmission rates R∗i (t), and a temporally-correlated error term

eε
L
i (t). This structure enables inference of mechanistically interpretable parameters whilst also

ensuring that statistical properties of the observed data are represented by the model. Moreover,
these two parts of the model can also be interpreted in epidemiological terms as two different
components of transmission rates:

1. Component 1 – transmission rates averaged over the whole state population, repre-
senting how macro- and micro-distancing affect the potential for widespread community
transmission. (R∗i (t)), and

2. Component 2 – the degree to which the transmission rates of the population of current
active cases deviates from the average statewide transmission rate (eε

L
i (t)).

Component 2 reflects the fact that the population of current active cases in each state at a
given time will not be representative of the the state-wide population, and may be either higher
(e.g. when cases arise from a cluster in a high-transmission environment) or lower (e.g. when
clusters are brought under control and cases placed in isolation).

Component 1 can therefore be interpreted as the expected rate of transmission if cases were
widespread in the community. The product of Components 1 and 2 can be interpreted as the
rate of transmission in the sub-population making up active cases at a given time.

Where a state has active cases in one or more clusters, the product of these components
gives the apparent rate of transmission in those clusters. Where a state has no active cases, the
product of Components 1 and 2 gives the rate of spread expected if an index case were to occur
in a random sub-population. Because the amplitude of this error term is learned from the data,
this is informative as to the range of plausible rates of spread that might be expected from a
case being introduced into a random sub-population.

Parameter values and priors
Tables S1 and S3 give the prior distributions of parameters in the semi-mechanistic and time-
series (εL and εO) parts of the model respectively. Table S2 gives fixed parameter values used
in the semi-mechanistic part of the model.

The parameters of the generation interval distribution are the posterior mean parameter
estimates corresponding to a Lognormal distribution over the serial interval estimated by [6].
The shape of the generation interval distribution for SARS-CoV-2 in comparable populations
is not well understood, and a number of alternative distributions have been suggested by other
analyses. A sensitivity analysis performed by running the model with alternative generation
interval distributions (not presented here) showed that parameter estimates were fairly consis-
tent between these scenarios, and the main findings were unaffected. A full, formal analysis of
sensitivity to this and other assumptions will be presented in a future publication.
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No ancillary data are available to inform p, the probability of transmission per hour of
contact in the absence of distancing behaviour. However at t = 0, holding HC0, NC0 HD0,
and ND0 constant, there is a deterministic relationship between p and R∗i (0) (the basic repro-
duction rate, which is the same for all states). The parameter p is therefore identifiable from
transmission rates at the beginning of the first epidemic wave in Australia. We define a prior on
p that corresponds to a prior over R∗i (0) matching the averages of the posterior means and 95%
credible intervals for 11 European countries as estimated by [7] in a sensitivity analysis where
the mean generation interval was 5 days — similar to the serial interval distribution assumed
here. This corresponds to a prior mean of 2.79, and a standard deviation of 1.70 for R∗i (0).
This prior distribution over p was determined by a Monte-Carlo moment-matching algorithm,
integrating over the prior values for HC0, NC0 HD0, and ND0.

Model fitting
We fitted (separate) models of ci(t) and NC0δi(t) to survey data alone in order to infer trends
in those parameters as informed by survey data. These are shown in Figures 1–2. In order to
incorporate those fitted trends into the Reff model whilst ensuring uncertainty in the trends was
fully accounted for, we re-fitted these models within the Reff model, with a joint likelihood. That
is, the likelihood of the Reff model was the product of the likelihood for case data, and the two
likelihoods for macro- and micro-distancing survey data. This is equivalent to incorporating
the posterior distributions over ci(t)κ1,i and NC0δi(t) from the survey-data-only models as
priors over those parameters in the Reff model, but without the loss of information incurred by
approximating the posteriors with some analytical distribution.

Inference was performed by Hamiltonian Monte Carlo using the R packages greta and
greta.gp [8, 9]. Posterior samples of model parameters were generated by 10 independent
chains of a Hamiltonian Monte Carlo sampler, each run for 1000 iterations after an initial,
discarded, ‘warm-up’ period (1000 iterations per chain) during which the sampler step size and
diagonal mass matrix was tuned, and the regions of highest density located. Convergence was
assessed by visual assessment of chains, ensuring that the potential scale reduction factor for
all parameters had values less than 1.1, and that there were at least 1000 effective samples for
each parameter.

Visual posterior predictive checks were performed to ensure that the observed data fell
within the posterior predictive density over all cases (and survey results), and over time-varying
case predictions within each state.
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Table S1: Parameters in the semi-mechanistic part of the time-varying model of Reff . Prior on
weights for ω correspond to Google mobility metrics in the following order: parks, residential,
retail and recreation, transit stations, workplaces.

Prior distribution Parameter description

r−1/2 ∼ N+(0, 0.5) Overdispersion of observed daily new infections
logit(p) ∼ N(2.57, 0.082) Transmission probability per hour contact time
HC0 ∼ N+(2.09, 0.062) Baseline average daily household contacts
NC0 ∼ N+(10.70, 0.282) Baseline average daily non-household contacts
HD0 ∼ N+(1.05, 1.682) Baseline daily duration per household contact (hours)
ND0 ∼ N+(0.687, 0.052) Baseline daily duration per non-household contact (hours)
ω ∼ Dir([0.06, 0.06, 0.27, 0.07, 0.19]) Mobility-metric weights for non-household contact rates
α ∼ lognormal(0, 1) Effect of weighted mobility on non-household contact rates

r
−1/2
NC ∼ N+(0, 0.5) Overdispersion of daily non-household contacts
κ0 ∼ N(τ3, T − τ3)[τ3, T ] Timing of peak microdistancing (truncated)
µκ1 ∼ N(0, 102) Hierarchical mean for state i microdistancing peak effect
σκ1 ∼ N+(0, 0.52) Hierarchical s.d. for state i microdistancing peak effect
µκ2 ∼ N(0, 102) Hierarchical mean for state i microdistancing waning
σκ2 ∼ N+(0, 0.52) Hierarchical s.d. for state i microdistancing waning
β ∼ U(0, 1) Microdistancing effect on transmission
q1 ∼ U(0, 1) Effect of quarantine of overseas arrivals (phase 1)
q2 × q1 ∼ U(0, 1) Relative effect of quarantine (phase 2 vs 1)
q3 × q2 ∼ U(0, 1) Relative effect of quarantine (phase 3 vs 2)

Table S2: Fixed parameters in the semi-mechanistic part of the time-varying model of Reff .

Parameter value Parameter description

τ1 = 2020-03-15 Date of change from arrivals policy phase 1 to 2
τ2 = 2020-03-28 Date of change from arrivals policy phase 2 to 3
τ3 = 1 July Date of final distancing restriction
T = 2020-06-07 Date of most recent mobility data

g∗(t) =
∫ t
t−1 lognormal(τ |1.377, 0.5672) dτ Baseline generation interval function

Table S3: Parameters used in the timeseries part of the time-varying model of Reff .

Prior distribution Parameter description

σ1 ∼ N+(0, 0.52) Hierarchical component of amplitude of deviation; import-local Reff

σi,1 ∼ N+(0, 0.52) State-level component of amplitude of deviation; import-local Reff

l1 ∼ lognormal(3, 1) Temporal correlation; import-local Reff

σ2 ∼ N+(0, 0.52) Hierarchical component of amplitude of deviation; local-local Reff

σi,2 ∼ N+(0, 0.52) State-level component of amplitude of deviation; local-local Reff

l2 ∼ lognormal(3, 1) Temporal correlation; local-local Reff

α2 ∼ lognormal(3, 1) Correlation mixture weights; local-local Reff
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Supplement: ensemble forecasts of the daily number of new local cases

Methodological details for each of the forecast models in the ensemble are provided below.

1. SEEIIR Forecast

Model Description

We used a discrete-time stochastic SEEIIR model to characterise infection in each Australian
jurisdiction. Let S(t) represent the number of susceptible individuals, E1(t) + E2(t) represent
the number of exposed individuals, I1(t) + I2(t) represent the number of infectious individuals,
and R(t) the number of removed individuals, at time t. Symptom onset is assumed to coincide
with the transition from I1 to I2. Note that the two exposed and infectious classes are specified
in order to obtain a Gamma distribution (with shape parameter 2) on the duration of time in
the exposed and infectious classes, respectively. It is assumed that 10 exposures were introduced
into the E1 compartment at time τ , to be inferred, giving initial conditions:

S(0) = N − E1(0) E1(0) = 10

E2(0) = 0 I1(0) = 0

I2(0) = 0 R(0) = 0

σ(t) =

{
0 if t < τ

σ if t ≥ τ
γ(t) =

{
0 if t < τ

γ if t ≥ τ
β(t) = Reff(t) · γ(t)

The number of individuals leaving each compartment on each daily time-step follows a
Binomial distribution, as follows:

S = 1− exp (−β(t) · [I1(t) + I2(t)] /N) S ∼ Bin(S(t), S)

E1 = 1− exp (2 · σ(t)) E1 ∼ Bin(E1(t), E1)

E2 = 1− exp (2 · σ(t)) E2 ∼ Bin(E2(t), E2)

I1 = 1− exp (2 · γ(t)) I1 ∼ Bin(I1(t), I1)

I2 = 1− exp (2 · γ(t)) I2 ∼ Bin(I2(t), I2)

S(t+ 1) = S(t)− S E1(t+ 1) = E1(t) + S − E1

E2(t+ 1) = E2(t) + E1 − E2 I1(t+ 1) = I1(t) + E2 − I1

I2(t+ 1) = I2(t) + I1 − I2 R(t+ 1) = R(t) + I2

We modelled the relationship between model incidence and the observed daily COVID-19
case counts (yt) using a Negative Binomial distribution with dispersion parameter k, since
the data are non-negative integer counts and are over-dispersed when compared to a Poisson
distribution. Let X(t) represent the state of the dynamic process and particle filter particles at
time t, and xt represent a realisation, i.e., xt = (st, e1t, e2t, i1t, i2t, rt, σt, γt, βt). The probability
of being observed (i.e., of being reported as a notifiable case) is the product of two probabilities:
that of entering the I2 compartment, pinc(t), and the observation probability pobs. In order to
improve the stability of the particle filter for very low (or zero) incidence, we also allowed for
the possibility of a very small number of observed cases that are not directly a result of the
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community-level epidemic dynamics (bgobs). The observation process is thus defined as:

L(yt | xt) ∼ (E[yt], k)

E[yt] = (1− pinc(t)) · bgobs + pinc(t) · pobs ·N

pinc(t) =
I2(t) +R(t)− I2(t− 1)−R(t− 1)

N

We used a bootstrap particle filter, as previously described in the context of our Australian
seasonal influenza forecasts [10, 11, 12, 13, 14], to generate forecasts at each day.

Parameters and model prior distributions

Description Value

(i) N The population size Table S5
Reff(t) The time-varying effective reproduction number See text
σ The inverse of the latent period (days−1) See text
γ The inverse of the infectious period (days−1) See text
τ The time of the initial exposures (days) ∼ U(0, 50)

(ii) bgobs The background observation rate 0.05
pobs The observation probability 0.8
k The dispersion parameter 10

(iii) Npx The number of particles 2000
Nmin The minimum number of effective particles 0.25 ·Npx

Table S4: Parameter values for (i) the transmission model; (ii) the observation model; and (iii)
the bootstrap particle filter.

Jurisdiction N

Australian Capital Territory 410,199
New South Wales 5,730,000
Queensland 2,560,000
South Australia 1,408,000
Northern Territory 154,280
Tasmania 240,342
Victoria 5,191,000
Western Australia 2,385,000

Table S5: The population sizes used for each forecast.

Model and inference parameters are described in Table S4. Note that the transmission
model assumes that the population mixes homogeneously. Since Australia is one of the most
urbanised countries in the world, for each jurisdiction we used capital city residential popula-
tions (including the entire metropolitan region, as listed in Table S5) in lieu of the residential
population of each jurisdiction as a whole.

The prior distributions for Reff(t), σ, and γ were constructed in a separate analysis, not
described here. Parameters σ and γ were sampled from a multivariate log-normal distribution
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that was defined to be consistent with a generation interval with mean=4.7 and SD=2.9, and
sampled independent Reff(t) trajectories for each particle.

2. Probabilistic Forecast

We provide a generative model of the dynamics of SARS-CoV-2 in Australia. This allows us to
forecast COVID-19 cases by state/territory, and nationally. The model links distancing mea-
sures – captured via Google Mobility Indices, and an estimated “Micro-distancing” parameter
– to the effective reproduction number of local infectious individuals, allowing us to produce
forecasts under scenarios of change in Government-imposed distancing measures.

Inferring Effective Reproduction Numbers and Social Isolation Measures
Using the method from Abbott et al. [3], and case data provided by the National Notifiable Dis-
ease Surveillance System (NNDSS), we produce estimates of the effective reproduction number
Reff. The model described below relates population mobility measures to this Reff estimate and
is then used to project the reproduction number forward in order to generate forecasts of cases.

These estimates of the effective reproduction numbers are assumed to be dependent upon the
proportion of observed imported cases out of all observed cases (ρ), the impact of “macro” social
isolation measures — captured via Google Mobility Indices (ω(t)) — and “micro-distancing”
(Md).

We link these previous estimates of the effective reproduction number with the distancing
measures via the model:

µ̂(t) = ρ(t)RI + (1− ρ(t))RL(t), (37)

RL(t) = RL0M
1{post-ban}
d × 2× logistic

(
βTω(t)

)
(38)

in which:

• ρ(t) (inferred; State level) is the proportion of imported cases (of all cases) on day t;

• RI (inferred; national level) is the effective reproduction number of imported cases;

• RL0 (inferred; national level) is the effective reproduction number of local symptomatic
cases at base levels of mobility;

• Md (inferred; national level) is a micro-distancing factor, which allows for the effective re-
production number of local cases to be reduced post 16/03/2020 (1{post-ban} is an indicator
function that takes value 0 or 1, pre- or post- specified date, respectively);

• β (inferred; national level) is a vector of parameters that link Google Mobility Indices
to the effective reproduction number of local cases via the logistic function, which ranges
between 0 and 1; and,

• ω(t) (state level) are the 7-day future moving average of Google Mobility Indices on day t.

We assume that (the likelihood)

µ̂(t) ∼ Gamma(k(t), θ(t)),

with k(t) = Reff(t)2

σ2(t)
and θ(t) = σ2(t)

Reff(t) , to match the distribution of Reff estimates from earlier

work [15].
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We perform inference in a Bayesian framework, using Hamiltonian Monte Carlo through the
software package pystan [16]. Prior distributions for the parameters are:

ρ(t) ∼ Beta (1 + I(t), 1 + L(t)) ;

β ∼ Normal(0, 1);

RI ∼ Gamma(1.25, 0.4);

RL0 ∼ Gamma(2.4, 1); and,

Md ∼ Gamma(0.5, 1),

where I(t) and L(t) are the number of imported and local cases on day t respectively.
We use case data for every Australian state/territory through the month of March, and

generate the posterior predictive distribution of the reproduction number in each jurisdiction
over time.

Forecasts of mobility indices
Our forecasts are produced by first forecasting (using a random walk with drift) the Google
Mobility Indices. For each Google mobility index, the differences in each successive day were
assumed to be normally distributed and used to estimate the mean and variance (for each
state/territory). This is done for the 28 days preceding the last Google mobility index entry at
the time the forecast is generated. The index is then forecast for the next 50 days by successively
adding a sample from the estimated normal distribution each day. Each index is capped at a
maximum of 0% and minimum -50% of the baseline to maintain reasonable estimates of the
trend.

The forecast Google mobility indices for each state/territory are then used to create a
posterior prediction of the local effective reproduction number, RL using Equation 38. To
account for waning in micro-distancing, after 01/06/2020, the effect of Md is halved when
forecasting the posterior prediction for RL.

Using the posterior distribution of the parameters relating Reff to the Google mobility in-
dices, we generate posterior predictive distributions of RL over time using Equation 38 for each
jurisdiction and the forecast Google mobility indices.

Generative model
We simulate the number of cases using a branching process based on the estimated reproduction
number described above. The generative model contains three types of infectious individuals:
Imported (II); Asymptomatic (IA), and; Symptomatic (IS).

Secondary cases
Each case is assumed to generate a number of cases drawn from a Negative Binomial distribution,
with parameters k and, RI/(RI + k), αARL/(αARL + k), αSRL/(αSRL + k) for imported,
asymptomatic and symptomatic individuals, respectively.

The parameters RI and RL (the effective reproduction numbers for import-to-local and
local-to-local cases, respectively) are sampled from the posterior distributions described above.
The parameter k is fixed at 0.1 in our analysis, according to existing estimates [17]. This
value allows for heterogeneity in the transmissibility of individuals — so-called super spreading
— in that the mean is realised with high variance. The parameter αS corresponds to the
contribution of transmissibility of symptomatic local cases and the parameter αA corresponds
to the contribution of transmissibility of asymptomatic local cases.

The Reff estimate generated via [3] using the NNDSS case data does not readily distinguish
between symptomatic and asymptomatic cases, and cases observed in this initial outbreak are
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Table S6: Detection probabilities of Symptomatic, Asymptomatic and Imported cases for each
jurisdiction.

Jurisdiction qS qA qI
NSW 0.50 0.10 0.95
QLD 0.40 0.05 0.95
SA 0.38 0.05 0.95
TAS 0.30 0.05 0.95
VIC 0.56 0.13 0.95
WA 0.38 0.05 0.95
ACT 0.80 0.20 0.95
NT 0.80 0.20 0.95

all assumed to be symptomatic. The effective reproduction number is the average number of
secondary infections caused by an infected individual, and can be characterised as

Reff =
st+1

st
, (39)

where st is the number of detected symptomatic cases in generation t.
In order to correctly attribute the contributions of symptomatic and asymptomatic cases to

secondary cases, we require

st+1 = (StαSRL +AtαARL)pSqS (40)

where St is the true number of local symptomatic cases (i.e., consisting of both observed
and unobserved cases), At is the true number of local asymptomatic cases, pS is the probability
of being symptomatic and qS is the probability of detecting a local symptomatic case.

Using Equations 39 and 40, and for local cases where Reff = RL, we have

αSpS + αA(1− pS) = 1 (41)

In this forecast we assume that ps is 0.2 and the relative infectiousness of asymptomatic
cases is 0.5 of symptomatic cases. It follows from equation 41 that αS = 1.67 and αA = 0.833.

The generative model must also consider probabilities of observing infectious cases. In-
fectious individuals are detected, and hence become a case, with probabilities qI , qA and qS
respectively. Table S6 contains the values used in this forecast.

Time distributions
For each infectious individual, we generate the time that they became infected. This time is
randomly generated by adding to the infection time of the individual that infected them, one
day plus a random time generated from a Gamma distribution (with shape=1 and scale=2).
This corresponds to a ‘Generation Time’ distribution with mean 3 days and variance 3.91. This
is based upon estimates of the generation interval distribution from the literature, and sympa-
thetic to our parameterisation of the Incubation Period distribution. The Incubation Period
distribution — the delay between infection and symptom onset — is two days plus a randomly
sampled time from a Gamma distribution (with shape=1 and scale=2) with mean 4 days and
variance 3.91.

Imports
We additionally assume a Poisson number of new imported infectious individuals on day t, where
mean parameter λt is inferred from data. We use six time periods (i = 1, . . . , 6) corresponding
to:
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• 01/03/2020 to 06/03/2020;

• 07/03/2020 to 13/03/2020;

• 14/03/2020 to 18/03/2020;

• 19/03/2020 to 23/03/2020;

• 24/03/2020 to 14/04/2020; and,

• 15/04/2020 onwards.

Cases were classified as imported or locally-acquired according to their reported place of
acquisition. If place of acquisition is unknown or missing, the cases were assumed to be locally
acquired. In the event that symptom onset date is missing, the date is inferred as follows:
notification date - 5 if notification date is recorded, otherwise, notification receive date - 6.

To assign the imported cases to the period in which they are likely to have arrived (as infec-
tious), we have subtracted 4 days from their symptom onset date. Within each state/territory
(j = 1, . . . , 8) and in each period, i, we assume that a Poisson number of imports are subse-
quently detected, Ni,j . That is, Ni,j ∼ Poisson(λi,j), independently on each day.

Assuming a priori λi,j ∼ Gamma(α, β), we have a posteriori that λi,j ∼ Gamma(ai,j , bi)
where

ai,j =

{
α+ ni,j if i 6= 4,

α+ 1.3ni,j , if i = 4

bi = β +mi,

in which ni,j is the total number of detected imported cases in period i in state/territory j, and
mi is the number of days in the period i (m = (m1,m2,m3,m4,m5,m6) = (6, 8, 4, 5, 22, 152)).
The number of imported infectious individuals in period i in state/territory j, Di,j , that are to
be subsequently detected are simulated each day from its posterior predictive distribution,

Di,j ∼ NegBin(ai,j , 1/(bi + 1)).

We specified α = 1 and β = 1/5 for the prior distribution, though this choice has little impact
on the posterior distribution. Having generated di,j for each day in period i in state/territory
j, we sum the total number of such cases, si,j . Subsequently, we simulate the total number of
undetected imported cases,

Ui,j ∼ NegBin(si,j , qI),

where qI is the detection probability of imported cases. The undetected imported cases are
allocated to the days in the period i with equal probability.

This process is simulated first, before seeding with any local cases and simulating forward.

Model Initialisation
Initialisation is based upon the very early stages of the outbreak. This is based on the assumption
that the observed cases make up a large proportion of initial infections. Considering these as
an initial generation is likely reasonable. Specifically:

• Given nS symptomatic local cases, and nI imported cases on 01/03/2020, we generate:
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– Undetected symptomatic individuals, US ∼ NegBin(nS , qS),

– Undetected imports UI ∼ NegBin(nI , qI); and

– Asymptomatic individuals, IA ∼ NegBin(IS , pS).

• Assign an infection time to the US , UI and IA individuals from the Generation Time
distribution.

• For any infection time which is after the period being considered, sample those detected
with probabilities qS , qI and qA, respectively. For detected and symptomatic cases, sample
the time to symptom onset from the Incubation Period distribution.

• For New South Wales and Victoria, qS , qI and qA were assumed to be half that of the other
states/territories prior to 15/03/2020, on the basis that these jurisdictions experienced a
higher volume of cases in this period.

Model Re-initialisation
Events that are difficult to forecast precisely will occur. These are typically large cluster out-
breaks; examples include those in Tasmania and most recently Victoria.

When such outbreaks occur, we add to our model state additional cases determined by per-
forming the initialisation step on the day the threshold is exceeded. These events are detected
via a threshold on the cumulative (over a moving 3-day period) cases — i.e., when the moving
average exceeds the forecasted cases by a factor of 10. The additional n cases are distributed
across the 3-day period by adding n/6, n/3 and n/2 to each corresponding day respectively.
Simulations are only permitted to re-initialise a maximum of 10 times. If this is exceeded, the
simulation is excluded from the forecast.

Code Availability
The code used to generate the simulated cases can be accessed at the repository https://

github.com/tdennisliu/covid19-forecasting-aus.

3. Time Series Forecast

We estimated a simple autoregressive model using available case data from many countries,
obtained from the Johns Hopkins COVID19 repository. For each state, the model uses data
from the previous 11 days to estimate the possible trajectory of cases over the next few weeks.

Model Description
We fit a global autoregressive model to all available data from the Johns Hopkins COVID19
repository.

Some data quality issues were detected and the resulting data cleaned or omitted. In par-
ticular:

• data by region in the UK, Spain and Italy were added.

• series with fewer than 500 cumulative cases were removed;

• series with fewer than 15 days of data were removed;

• series with anomalous data were removed (e.g., negative case numbers, or very large step
changes).
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Let nt,i = the number of daily cases on day t in country (or region) i, and let yt,i =
log(nt,i + 0.5). We fit an autoregressive model of order p:

yt,i = φ1yt−1,i + · · ·+ φpyt−p,i + εt,i,

where εt,i are independent N(0, σ2
i ) errors. The model is estimated using ordinary least squares

estimation, with no stationarity constraints. The parameters are scale free other than the error
variance σ2

i . Consequently the model is estimated by first scaling all data to have the same
mean and variance, to avoid any one country dominating in the estimation. Then the model is
applied to the raw data from each country or region when forecasting.

The value of p = 11 is chosen to minimize the average 7-day-ahead mean absolute error on
recent Australian data. We can afford to have a large value of p due to the large data set used
to estimate the model.

It is not intended to be a model of the disease development, and contains no terms that
describe public health measures or related policies. However, the model is highly adaptive to
different stages of the pandemic including rapid increases, periods of containment, and periods
where there are few cases. Time series models of this kind tend to produce relatively accurate
short-term forecasts, but are probably less accurate than epidemiological models in the long-
term.

The model code is available at https://github.com/pmontman/covid19forec.
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Supplementary figures

Figure S2: Time series of new daily confirmed cases of COVID-19 in Australia (purple = overseas
acquired, blue = locally acquired, green = unknown) from 14 February to 5 July 2020. Plotted
by recorded or inferred date of symptom onset.
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Figure S3: Time series of new daily confirmed cases of COVID-19 in each Australian
state/territory (purple = overseas acquired, blue = locally acquired, green = unknown) from
14 February to 5 July 2020. Plotted by recorded or inferred date of symptom onset. Note that
y-axis scales differ between states/territories.
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Figure S4: Estimated change in the distribution of times from symptom onset to detection for
locally-acquired cases (black line = median time to detection; yellow ribbon = 90% quantile of
distribution; black dots = time-to-detection of each case). Future changes in testing strategies,
particularly the increasing use of serological assays for case ascertainment, may require changes
to the model used to capture this trend and account for it in estimates of transmission potential.
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Figure S5: Estimate of average state-level trend in local transmission potential, if we assume
that only ‘macro-distancing’ behaviour had changed and not ‘micro-distancing’ behaviour or
time-to-detection, for each state/territory (light blue ribbon = 90% credible interval; dark
blue ribbon = 50% credible interval). Estimates are made up to 1 July, based on cases with
inferred infection dates up to and including 1 July. Solid grey vertical lines indicate key dates
of implementation of various physical distancing policies. Black dotted line indicates the target
value of 1 for the effective reproduction number required for control.
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Figure S6: Estimate of average state-level trend in local transmission potential, if we assume
that only ‘micro-distancing’ behaviour had changed and not ‘macro-distancing’ behaviour or
time-to-detection, for each state/territory (light purple ribbon = 90% credible interval; dark
purple ribbon = 50% credible interval). Estimates are made up to 1 July, based on cases with
inferred infection dates up to and including 1 July. Solid grey vertical lines indicate key dates
of implementation of various physical distancing policies. Black dotted line indicates the target
value of 1 for the effective reproduction number required for control.
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Figure S7: Percentage change compared to a pre-COVID-19 baseline of a number of key mobility
data streams in the Australian Capital Territory. Solid vertical lines give the dates of three
physical distancing measures: restriction of gatherings to 500 people or fewer; closure of bars,
restaurants, and cafes; restriction of gatherings to 2 people or fewer. The dashed vertical line
marks the most recent date for which some mobility data are available. Purple dots in each
panel are data stream values (percentage change on baseline). Solid lines and grey shaded
regions are the posterior mean and 95% credible interval estimated by our model of the latent
behavioural factors driving each data stream.

52



Figure S8: Percentage change compared to a pre-COVID-19 baseline of a number of key mobility
data streams in New South Wales. Solid vertical lines give the dates of three physical distancing
measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants, and cafes;
restriction of gatherings to 2 people or fewer. The dashed vertical line marks the most recent
date for which some mobility data are available. Purple dots in each panel are data stream
values (percentage change on baseline). Solid lines and grey shaded regions are the posterior
mean and 95% credible interval estimated by our model of the latent behavioural factors driving
each data stream.
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Figure S9: Percentage change compared to a pre-COVID-19 baseline of a number of key mobility
data streams in Northern Territory. Solid vertical lines give the dates of three physical distancing
measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants, and cafes;
restriction of gatherings to 2 people or fewer. The dashed vertical line marks the most recent
date for which some mobility data are available. Purple dots in each panel are data stream
values (percentage change on baseline). Solid lines and grey shaded regions are the posterior
mean and 95% credible interval estimated by our model of the latent behavioural factors driving
each data stream.
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Figure S10: Percentage change compared to a pre-COVID-19 baseline of a number of key mobil-
ity data streams in Queensland. Solid vertical lines give the dates of three physical distancing
measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants, and
cafes; restriction of gatherings to 2 people or fewer. The dashed vertical line marks the most
recent date for which some mobility data are available. Purple dots in each panel are data
stream values (percentage change on baseline). Solid lines and grey shaded regions are the pos-
terior mean and 95% credible interval estimated by our model of the latent behavioural factors
driving each data stream.
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Figure S11: Percentage change compared to a pre-COVID-19 baseline of a number of key
mobility data streams in South Australia. Solid vertical lines give the dates of three physical
distancing measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants,
and cafes; restriction of gatherings to 2 people or fewer. The dashed vertical line marks the
most recent date for which some mobility data are available. Purple dots in each panel are
data stream values (percentage change on baseline). Solid lines and grey shaded regions are
the posterior mean and 95% credible interval estimated by our model of the latent behavioural
factors driving each data stream.
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Figure S12: Percentage change compared to a pre-COVID-19 baseline of a number of key
mobility data streams in Tasmania. Solid vertical lines give the dates of three physical distancing
measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants, and cafes;
restriction of gatherings to 2 people or fewer. The dashed vertical line marks the most recent
date for which some mobility data are available. Purple dots in each panel are data stream
values (percentage change on baseline). Solid lines and grey shaded regions are the posterior
mean and 95% credible interval estimated by our model of the latent behavioural factors driving
each data stream.
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Figure S13: Percentage change compared to a pre-COVID-19 baseline of a number of key
mobility data streams in Victoria. Solid vertical lines give the dates of three physical distancing
measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants, and cafes;
restriction of gatherings to 2 people or fewer. The dashed vertical line marks the most recent
date for which some mobility data are available. Purple dots in each panel are data stream
values (percentage change on baseline). Solid lines and grey shaded regions are the posterior
mean and 95% credible interval estimated by our model of the latent behavioural factors driving
each data stream.
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Figure S14: Percentage change compared to a pre-COVID-19 baseline of a number of key
mobility data streams in Western Australia. Solid vertical lines give the dates of three physical
distancing measures: restriction of gatherings to 500 people or fewer; closure of bars, restaurants,
and cafes; restriction of gatherings to 2 people or fewer. The dashed vertical line marks the
most recent date for which some mobility data are available. Purple dots in each panel are
data stream values (percentage change on baseline). Solid lines and grey shaded regions are
the posterior mean and 95% credible interval estimated by our model of the latent behavioural
factors driving each data stream.
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